首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First-order perturbation approximation for rock elastic moduli in transversely isotropic media
Authors:GuoChen Wu  XiaoLong Zhao  Jie Tang  ZeYuan Du
Institution:1.School of Geoscience,China University of Petroleum,Qingdao,China;2.Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao,China
Abstract:Seismic anisotropy is a relatively common seismic wave phenomenon in laminated sedimentary rocks such as shale and it can be used to investigate mechanical properties of such rocks and other geological materials. Young’s modulus and Poisson’s ratio are the most common mechanical properties determined in various rock engineering practices. Approximate and explicit equations are proposed for determining Young’s modulus and Poisson’s ratio in anisotropic rocks, in which the symmetry plane and symmetry axis of the anisotropy are derived from the constitutive equation of transversely isotropic rock. These equations are based on the media decomposition principle and seismic wave perturbation theory and their accuracy is tested on two sets of laboratory data. A strong correlation is found for Young’s modulus in two principal directions and for Poisson’s ratio along the symmetry plane. Further, there is an underprediction of Poisson’s ratio along the symmetry axis, although the overall behavior follows the trend of the measured data. Tests on a real dataset show that it is necessary to account for anisotropy when characterizing rock mechanical properties of shale. The approximate equations can effectively estimate anisotropic Young’s modulus and Poisson’s ratio, both of which are critical rock mechanical data input for hydraulic fracturing engineering.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号