首页 | 本学科首页   官方微博 | 高级检索  
     


Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods
Authors:Zhaofeng Li  Yu-Hsing Wang  Xia Li  Quan Yuan
Affiliation:1.Department of Civil and Environmental Engineering,The Hong Kong University of Science and Technology,Clear Water Bay,China;2.School of Civil Engineering,Southeast University,Nanjing,China;3.Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education,Southeast University,Nanjing,China;4.Quality Control and Technology Research & Development Center,Guangzhou Metro Design & Research Institute Co., Ltd.,Guangzhou,China
Abstract:This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号