首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lessons from a joint interpretation of vibroseis wide-angle and near-vertical reflection data in the northeastern Yilgarn, Western Australia
Authors:T Fomin  BR Goleby  
Institution:aPredictive Mineral Discovery Cooperative Research Centre, c/-Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia;bANSIR, c/-Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, Australia
Abstract:A wide-angle reflection seismic experiment was carried out in the Eastern Goldfields granite–greenstone terrane of the Archaean Yilgarn Craton during 2001. This was the first time in Australia that wide-angle data were collected using a vibrator source and with a high density of observations. Unlike other wide-angle surveys carried out in other parts of the world, our survey used both a smaller number of sweeps, and shorter sweeps. We recorded three sweeps (each with its own frequency range) at each vibration point. The experiment demonstrated that the sum of three 12 s sweeps using 3 large vibrators provides enough energy to record signal at offsets up to up to 60–70 km. A comparison of individual shot gathers from near-vertical data and receiver gathers from wide-angle data demonstrated higher reflectivity in near-vertical data. This may be due to differences in the frequency bands of the recording equipment. The after stack section obtained from dense wide-angle data is different from that obtained from conventional near-vertical reflection data. The conventional reflection section provides higher quality image of the crust compared to the wide-angle section. This could be explained by the low-fold in wide-angle data and differences in the acquisition and processing methodology. The wide-angle survey, which was coincident with a regional vibroseis seismic reflection transect, was focused on the Leonora–Laverton region. The survey was designed to supplement the deep seismic reflection studies with velocity information. This also created an opportunity to compare velocity model derived from wide-angle reflection seismic data with a structural image obtained from the deep common mid-point seismic reflection data, and thus refine our geological understanding of the area. A high velocity body reaching a maximum thickness of 2 km was identified exclusively from the seismic velocity model derived from wide-angle study. This body is interpreted as mafic rocks within the Archaean Granite–Greenstone Belt. The joint interpretation also shows that structural boundaries do not always follow lithological boundaries in our study area. The combination of wide-angle reflection and near-vertical reflection data has facilitated a more complete geological interpretation of the seismic data.
Keywords:Wide-angle reflection technique  Near-vertical reflection technique  Vibroseis source  Velocity modelling  Crustal reflectivity  Archaen Yilgarn Craton
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号