首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The formation of mantle phlogopite in subduction zone hybridization
Authors:Peter J Wyllie  Toshimori Sekine
Institution:(1) Department of the Geophysical Sciences, University of Chicago, 60637 Chicago, Illinois, USA;(2) Present address: Department of Earth Sciences, Monash University, 3168 Clayton, Victoria, Australia
Abstract:Extrapolation and extension of phase equilibria in the model system KAlSiO4-Mg2SiO4-SiO2-H2O suggests that at depths greater than 100 km (deeper than amphibole stability), hybridism between cool hydrous siliceous magma, rising from subducted oceanic crust, and the hotter overlying mantle peridotite produces a series of discrete masses composed largely of phlogopite, orthopyroxene, and clinopyroxene (enriched in Jadeite). Quartz (or coesite) may occur with phlogopite in the lowest part of the masses. The heterogeneous layer thus produced above the subducted oceanic crust provides: (1) aqueous fluids expelled during hybridization and solidification, which rise to generate in overlying mantle (given suitable thermal structure) H2O-undersaturated basic magma, which is the parent of the calc-alkalic rock series erupted at the volcanic front; (2) masses of phlogopite-pyroxenites which melt when they cross a deeper, high-temperature solidus, yielding the parents of alkalic magmas erupted behind the volcanic front; and (3) blocks of phlogopite-pyroxenites which may rise diapirically for long-term residence in continental lithosphere, and later contribute to the potassium (and geochemically-related elements) involved in some of the continental magmatism with geochemistry ascribed to mantle metasomatism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号