首页 | 本学科首页   官方微博 | 高级检索  
     

燕山造山带后石湖山碱性环状杂岩体的成因与形成过程
引用本文:文霞,马昌前,桑隆康,Roger Mason,佘振兵,熊富浩. 燕山造山带后石湖山碱性环状杂岩体的成因与形成过程[J]. 地球科学, 2013, 38(4): 689-714. DOI: 10.3799/dqkx.2013.069
作者姓名:文霞  马昌前  桑隆康  Roger Mason  佘振兵  熊富浩
作者单位:中国地质大学地球科学学院, 湖北武汉 430074
基金项目:湖北省自然科学基金重点项目,教育部和国家外国专家局高等学校学科创新引智计划
摘    要:后石湖山杂岩体是与垮塌破火山口有关的碱性环状杂岩体, 主要由呈环形分布的碱性火山岩、环状岩墙(斑状石英正长岩)、嵌套的中心复式岩株(晶洞碱长花岗岩和斑状碱长花岗岩)和锥状岩席(石英正长斑岩和花岗斑岩)组成.LA-ICPMS锆石U-Pb年代学分析表明, 斑状石英正长岩环状岩墙、石英正长斑岩和花岗斑岩锥状岩席的侵位年龄分别为119±3Ma、121±2Ma和121±2Ma.该环状杂岩体火山岩与侵入岩的形成年龄相近, 体现了它作为火山-侵入杂岩体的特征.斑状石英正长岩富碱(Na2O+K2O=10.0%~10.5%), K2O含量较高(5.21%~5.42%), 具正的Eu异常(Eu/Eu*=1.05~1.40).碱长花岗岩和斑岩均具有富碱、高FeOtot/MgO、Ga/Al、Zr、Nb和REE值(Eu除外), 以及低Al2O3、CaO、MgO、Ba、Sr和Eu含量的特征, 都属于A型花岗岩质岩石.其中斑岩为铝质A型花岗岩, 具有高的初始岩浆温度(880~901℃).所有A型花岗质岩石均具有较富集的Nd同位素组成, εNd(t)值变化于-13.9~-12.2之间.斑状石英正长岩是下地壳中-基性麻粒岩和片麻岩部分熔融产生的熔体与幔源玄武质岩浆混合, 后又发生单斜辉石分离结晶的产物; 碱长花岗岩源于上地壳长英质岩石部分熔融产生的熔体与幔源玄武质岩浆混合, 随后经历长石的分离结晶作用而成; 斑岩是受幔源岩浆底侵加热的上地壳长英质岩石的部分熔融产生的熔体, 并经历了长石的分离结晶作用而产生.该环状杂岩体的形成过程可以概括为: (1)火山爆炸性喷发形成大量的碱性火山熔岩和火山碎屑岩; (2)地下岩浆房空虚导致压力下降, 其顶板围岩失稳而沿火山口周围近直立的环状断裂垮塌, 形成塌陷的破火山口.与此同时, 下覆岩浆房的岩浆被动挤入环状断裂而形成斑状石英正长岩环状岩墙; (3)浅部地壳的长英质岩浆房过压, 促使其高温过碱质A型花岗质岩浆上升侵位形成了中心的斑状碱长花岗岩岩株, 这些岩浆的上涌导致上覆围岩产生倾角中-陡的、内倾的锥状裂隙, 为石英正长斑岩锥状岩席侵位提供了空间; (4)浅部岩浆房复活, 高温过碱质A型花岗质岩浆再度上升侵位形成被嵌套的晶洞碱长花岗岩岩株.同样, 这种岩浆的再度上侵导致上覆围岩产生了倾角较陡而内倾的锥状裂隙, 为花岗斑岩锥状岩席提供了侵位空间.后石湖山碱性环状杂岩体的形成是华北东部早白垩世与克拉通破坏相关的伸展构造体制下的产物, 这种构造体制可能与古太平洋板块的俯冲作用有关. 

关 键 词:环状杂岩体   地质学   锆石U-Pb年代学   地球化学   形成过程   燕山造山带
收稿时间:2013-02-21

The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt
WEN Xia,MA Chang-qian,SANG Long-kang,ROGER Mason,SHE Zhen-bing,XIONG Fu-hao. The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(4): 689-714. DOI: 10.3799/dqkx.2013.069
Authors:WEN Xia  MA Chang-qian  SANG Long-kang  ROGER Mason  SHE Zhen-bing  XIONG Fu-hao
Affiliation:Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Abstract:The Houshihushan complex is an alkaline ring complex associated with a collapsed caldera, consisting of a circular screen of alkaline volcanic rocks and post-collapse resurgent intrusions including a ring dyke of porphyritic quartz syenite, a central composite hypabyssal intrusion of nested stocks of drusy alkali-feldspar granite and porphyritic alkali-feldspar granite, and cone sheets of quartz syenite porphyry and granite porphyry. Zircon LA-ICPMS U-Pb analyses yields mean 206Pb/238U ages of 119±3Ma for porphyritic quartz syenite, 121±2Ma for quartz syenite and 121±2Ma for granite porphyry, respectively. Volcanic rocks of the Houshihushan Ring Complex (HRC) have similar ages to those of the intrusive rocks, confirming it as a volcanic-intrusive complex. Porphyritic quartz syenites have high contents of Na2O+K2O (10.0%-10.5%) and K2O (5.21%-5.42%) with positive Eu anomalies (Eu/Eu*=1.05-1.40). Alkali-feldspar granites and porphyries are characterized by enriched Na2O+K2O, FeOtot/MgO, Ga/Al, Zr, Nb and REE (except for Eu) and low abundance of Al2O3, CaO, MgO, Ba, Sr and Eu, indicative of A-type granitic rocks. The porphyries can be classified as aluminous A-type granites, and show high zircon saturation temperatures (880-901℃). All the A-type granites of the HRC posses negative εNd(t) values from -13.9 to -12.2. Porphyritic quartz syenite magmas were derived from partial melting of intermediate to mafic granulites and gneisses in the lower crust that mixed with enriched mantle-derived basaltic magma, with subsequent differentiation of clinopyroxene. Alkali-feldspar granite magmas were produced by mixing of mantle-derived basaltic magmas with upper crustal felsic melts, with fractionation of feldspars. The petrogenetic processes of porphyritic magmas involved partial melting of quartzfeldspathic rocks at shallow crust depths coupled with differentiation of feldspars. We suggest that development of the HRC involved the following four-stage sequence: (1) massive alkaline laves and pyroclastics erupted explosively; (2) the subsided caldera formed because of loss of magma from an underlying magma chamber which reduced magma pressure and facilitated collapse of the roof of the magma chamber along near-vertical ring faults. Magma intruded passively up the opening ring-faults to form the ring dyke of porphyritic quartz syenite during caldera collapse; (3) the high-level magma chamer became overpressured, and hot peralkline A-type granite magma was emplaced as the central stock of porphyritic alkali-feldspar granite. The overlying crust was fractured to generate cone fractures that provided space for the ascent of felsic melts to form cone sheets of quartz syenite porphyry; (4) the chamber resurged and a cogenetic pluton was emplaced as the nested stock of drusy alkali-feldspar granite. Build-up of magma overpressure within the central source chamber imparted upward force to fracture the host rock and form new conical fractures. These fractures were filled with magma to form cone sheets of granite porphyry. The Houshihushan alkaline ring complex formed over a brief time period in an extensional setting related to destruction of the eastern North China Craton during Early Cretaceous, possibly associated with subduction of paleo-Pacific plate. 
Keywords:ring complex  geology  zircon U-Pb geochronology  geochemistry  evolution  Yanshan orogenic belt
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球科学》浏览原始摘要信息
点击此处可从《地球科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号