首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习理论的无人机影像分类
引用本文:阳成. 基于深度学习理论的无人机影像分类[J]. 北京测绘, 2020, 0(4): 481-484
作者姓名:阳成
作者单位:广东省地质测绘院
摘    要:针对无人机影像深度学习分类方法缺乏现状,本文利用深度学习理论卷积神经网络方法对无人机影像进行了分类。该法首先抽取无人机影像作为训练集和检验集,然后建立一个2个卷积层-池化层的卷积神经网络模型进行深度学习,通过设定参数并运行模型实现无人机影像分类。实验表明,本文提出的方法可完成较复杂地区无人机影像分类,其分类精度与支持向量机方法相当,为无人机遥感影像分类提供了一个崭新的技术视点。

关 键 词:深度学习  卷积神经网络  遥感影像分类  无人机测绘  玻尔兹曼机

Unmanned Aerial Vehicle Image Classification Based on Deep Learning Theory
YANG Cheng. Unmanned Aerial Vehicle Image Classification Based on Deep Learning Theory[J]. Beijing Surveying and Mapping, 2020, 0(4): 481-484
Authors:YANG Cheng
Affiliation:(Geology Surveying and Mapping Institute of Guangdong, Guangzhou Guangdong 510800, China)
Abstract:Aiming at the lack of deep learning classification methods for UAV images,this paper classified UAV images using convolutional neural network based on deep learning theory.Firstly,the UAV image was extracted as training set and test set.Then,a convolution neural network model with two convolution layers and pooling layers was established for deep learning.The UAV image classification was realized by setting parameters and running models.Experiments show that the proposed method could classify UAV images in complex areas,and its classification accuracy is comparable to that of support vector machine.It provides a new technical perspective for UAV remote sensing image classification.
Keywords:deep learning  convolutional neural network  remote sensing image classification  Unmanned Aerial Vehicle(UAV)survey and mapping  boltzmann machine
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号