首页 | 本学科首页   官方微博 | 高级检索  
     


Linear and stratified sampling-based deep learning models for improving the river streamflow forecasting to mitigate flooding disaster
Authors:Afan  Haitham Abdulmohsin  Yafouz   Ayman  Birima   Ahmed H.  Ahmed  Ali Najah  Kisi   Ozgur  Chaplot   Barkha  El-Shafie  Ahmed
Affiliation:1.Department of Civil Engineering, Al-maarif University College, Ramadi, Iraq
;2.Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia
;3.Department of Civil Engineering, College of Engineering, Qassim University, Unaizah, Saudi Arabia
;4.Institute for Energy Infrastructure (IEI), Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
;5.Civil Engineering Department, Ilia State University, Tbilisi, Georgia
;6.Department of Geography, M.J.K. College, Bettiah, A Constituent unit of Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India
;7.Department of Civil Engineering, Faculty of Engineering, University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
;8.National Water and Energy Center, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
;
Abstract:Natural Hazards - Due to the need to reduce the flooding disaster, river streamflow prediction is required to be enhanced by the aid of deep learning algorithms. To achieve accurate model of...
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号