首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vertical accretion rates in fluvial systems: ­a comparison of volumetric and depth‐based estimates
Authors:Barbara Rumsby
Abstract:A wide range of approaches has been adopted for collecting and reporting vertical accretion rates, hence evaluation of results from different catchments, or even from different reaches within the same basin, is difficult as they may not be directly comparable. The present study compares depth‐ and volume‐based estimates of sediment accumulation for well‐dated vertical accretion sequences at Broomhaugh Island in the Tyne basin, northern England. High resolution dating control (based on heavy metal stratigraphy and cartography) coupled with detailed reconstruction of channel geometry allows accumulation rates to be calculated for the last 300–400 years. The results show a marked disparity in the magnitude and pattern of vertical accretion rates between the two approaches. The average annual thickness of sediment increases progressively, with a six‐fold difference between the seventeenth and twentieth centuries. The volume figures are more consistent, with a two‐fold difference between the highest and lowest rates, both of which occurred in the twentieth century. A major control on vertical accretion is found to be changing channel shape and capacity. Enlargement of the channel by 76 per cent since the seventeenth century, associated with channel bed incision, has resulted in fewer overbank flows. Hence floods, with their associated suspended sediment loads, which once inundated the floodplain are now confined within the channel. The reduced areal extent of surfaces available for deposition has resulted in greater annual thickness of sediment accumulated, despite an overall reduction in volume. This study emphasizes that caution is needed when attempting to identify causal linkages between changes in sedimentation rates and catchment land use and/or climatic factors and the geomorphological setting of the site must be taken into account. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:vertical accretion  sedimentation rates  channel capacity  fluvial incision
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号