首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post‐mining landform evolution modelling: 2. Effects of vegetation and surface ripping
Authors:KG Evans  GR Willgoose
Abstract:Computer simulations of the topographic evolution of the proposed post‐mining rehabilitated landform for the ERA Ranger Mine, showed that for the unvegetated and unripped case, the landform at 1000 years would be dissected by localized erosion valleys (maximum depth = 7·6 m) with fans (maximum depth = 14·8 m) at the outlet of the valleys. Valley form simulated by SIBERIA has been recognized in nature. This indicates that SIBERIA models natural processes efficiently. For the vegetated and ripped case, reduced valley development (maximum 1000 year depth = 2·4m) and deposition (maximum 1000 year depth = 4·8m) occurred in similar locations as for the unvegetated and unripped case (i.e. on steep batter slopes and in the central depression areas of the landform). For the vegetated and ripped condition, simulated maximum valley depth in the capping over the tailings containment structure was c. 2·2 m. By modelling valley incision, decisions can be made on the depth of tailings cover required to prevent tailings from being exposed to the environment within a certain time frame. A reduction in thickness of 1 m of capping material over tailings equates to c. 1 000 000 Mm3 over a 1 km2 tailings dam area. This represents a saving of c. $1 500 000 in earthworks alone. Incorporation of SIBERIA simulations in the design process may result in cost reduction while improving confidence in environmental protection mechanisms. Copyright 2000 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.
Keywords:SIBERIA  topographic evolution model  post‐mining landform  tailings containment  erosion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号