首页 | 本学科首页   官方微博 | 高级检索  
     


Design of ASTROD-GW Orbit
Authors:Jin-rui Men   Wei-tou Ni  Gang Wang  
Affiliation:a Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008;b Graduate University of Chinese Academy of Sciences, Beijing 100049;c National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012
Abstract:The ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity Using Optical Devices] Optimized for Gravitation Wave Detection), the mission of the laser astrodynamical gravitational wave detection, is the scheme of optimality of the gravitational wave detection on which the ASTROD is concentrated. Its spacecraft orbits form a triangular array close to an equilateral triangle in the vicinity of the solar-terrestrial Lagrangian points L3, L4 and L5. The length of the interference arm is about 2.6 × 108 km and the detectable wavelength of the gravitational wave is 52 times larger than that detected by the LISA (Laser Interferometer Space Antenna). In this article, the design and optimization method of the ASTROD-GW orbit are summarized. After the orbit is optimized, the variation in the arm length difference (which can be called the interference difference in laser interferometry) within 10 years is in the order of magnitude of 10−4 AU. The Doppler velocities in the three arm length directions are smaller than 4 m/s, and all of them are less than that required by the LISA. Therefore the laser ranging techniques developed by the LISA can be applied to the ASTROD-GW.
Keywords:Space vehicle—  gravitational wave
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号