首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wet and Dry Basalt Magma Evolution at Torishima Volcano, Izu Bonin Arc, Japan: the Possible Role of Phengite in the Downgoing Slab
Authors:Tamura  Y; Tani  K; Chang  Q; Shukuno  H; Kawabata  H; Ishizuka  O; Fiske  R S
Institution:1Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
2Institute of Geoscience, Geological Survey of Japan/Aist, Tsukuba 305-8567, Japan
3Smithsonian Institution, Washington, DC 20560, USA
Abstract:The arc-front volcanoes of Sumisu (31·5°N, 140°E)and Torishima (30·5°N, 140·3°E) in thecentral Izu–Bonin arc are similar in size and rise asrelatively isolated edifices from the seafloor. Together theyprovide valuable along-arc information about magma generationprocesses. The volcanoes have erupted low-K basalts originatingfrom both wet and dry parental basaltic magmas (low-Zr basaltsand high-Zr basalts, respectively). Based on models involvingfluid-immobile incompatible element ratios (La/Sm), the parentalbasalts appear to result from different degrees of partial meltingof the same source mantle (~20% and ~10% for wet and dry basaltmagmas, respectively). Assuming that the wet basalts containgreater abundances of slab-derived components than their drycounterparts, geochemical comparison of these two basalt typespermits the identification of the specific elements involvedin fluid transport from the subducting slab. Using an extensiveset of new geochemical data from Torishima, where the top ofthe downgoing slab is about 100 km deep, we find that Cs, Pb,and Sr are variably enriched in the low-Zr basalts, which cannotbe accounted for by fractional crystallization or by differencesin the degree of mantle melting. These elements are interpretedto be selectively concentrated in slab-derived metasomatic fluids.Variations in K, high field strength element and rare earthelement concentrations are readily explained by variations inthe degree of melting between the low- and high-Zr basalts;these elements are not contained in the slab-derived fluids.Rb and Ba exhibit variable behaviour in the low-Zr basalts,ranging from immobile, similar to K, to mildly enriched in somelow-Zr basalts. We suggest that the K-rich mica, phengite, playsan important role in determining the composition of fluids releasedfrom the downgoing slab. In arc-front settings, where slab depthis ≤100 km, phengite is stable, and the fluids released fromthe slab contain little K. In back-arc settings, however, wherethe slab is at 100–140 km depth, phengite is unstable,and K-rich fluids are released. We conclude that cross-arc variationsin the K content of arc basalts are probably related to differingcompositions of released fluids or melts rather than the widelyheld view that such variations are controlled by the degreeof partial melting. KEY WORDS: arc volcano; degrees of melting; mantle wedge; water; wet and dry basalts
Keywords:: arc volcano  degrees of melting  mantle wedge  water  wet and dry basalts
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号