首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon isotopic fractionation in macroalgae from Cádiz Bay (Southern Spain): Comparison with other bio-geographic regions
Authors:Jesús M Mercado  Carmen B de los Santos  J Lucas Pérez-Lloréns  Juan J Vergara
Institution:1. Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Puerto Pesquero s/n. Apdo. 285, 29640 Fuengirola (Málaga), Spain;2. Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain
Abstract:The 13C signature of forty-five macroalgal species from intertidal zones at Cádiz Bay was analysed in order to research the extension of diffusive vs. non-diffusive utilisation of dissolved inorganic carbon (DIC) and to perform a comparison with data published for other bio-geographic regions. The ∂13C values ranged from −6.8‰ to −33‰, although the span of variation was different depending on the taxa. Thus, ∂13C for Chlorophyta varied from −7‰ (Codium adhaerens) to −29.6‰ (Flabellia petiolata), while all the Phaeophyceae (excepting Padina pavonica with ∂13C higher than −10‰) had values between −10‰, and −20‰. The widest variation range was recorded in Rhodophyta, from values above −10‰ (Liagora viscida) to values lower than −30‰ obtained in three species belonging to the subclass Rhodymeniophycidae. Accordingly, the mean ∂13C value calculated for red algae (−20.2‰) was significantly lower than that for brown (−15.9‰) and green algae (−15.6‰). Most of the analysed red algae were species inhabiting crevices and the low intertidal fringe which explains that, on average, the shaded-habitat species had a ∂13C value lower than those growing fully exposed to sun (i.e. in rockpools or at the upper intertidal zone). The comparison between the capacity for non-diffusive use of DIC (i.e. active or facilitated transport of HCO3 and/or CO2) and the ∂13C values reveals that values more negative than −30‰ indicate that photosynthesis is dependent on CO2 diffusive entry, whereas values above this threshold would not indicate necessary the operation of a non-diffusive DIC transport mechanism. Furthermore, external carbonic anhydrase activity (extCA) and ∂13C values were negatively correlated indicating that the higher the dependence of the photosynthesis on the CO2 supplied from HCO3 via extCA, the lower the ∂13C in the algal material. The comparison between the ∂13C values obtained for the analysed species and those published for species inhabiting other bio-geographic areas (warm-temperate, cold and polar) suggests that globally (at least for the red and brown algae) the non-diffusive entry of DIC is more widely spread among the species from Cádiz Bay than among those of polar regions. If it is assumed that non-diffusive use of DIC implies saturation of photosynthesis at the present-day CO2 concentration in seawater, our data indicate that the potential impact of the acidification on photosynthesis in the seaweed communities will be different depending on the latitude.
Keywords:carbon 13  carbonic anhydrase  inorganic carbon  isotope fractionation  seaweeds    diz Bay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号