首页 | 本学科首页   官方微博 | 高级检索  
     

我国省域创新产出的空间特征和时空演化——基于探索性空间数据分析的实证
引用本文:李国平,王春杨. 我国省域创新产出的空间特征和时空演化——基于探索性空间数据分析的实证[J]. 地理研究, 2012, 31(1): 95-106. DOI: 10.11821/yj2012010010
作者姓名:李国平  王春杨
作者单位:北京大学政府管理学院, 北京 100871
基金项目:国家社会科学基金重大项目(10zd&022);北京市科学技术研究院项目:区域协同创新与首都经济发展科学决策服务平台构建;中国科学技术发展战略研究院委托项目:区域创新体系建设及典型地区案例研究
摘    要:以我国31个省域作为空间观测单元,以专利申请受理数作为创新产出的衡量指标,对我国1997~2008年期间省域创新产出的空间分布进行了探索性空间数据分析(ESDA)。通过计算区位基尼系数和集中度指数,发现我国的创新活动显示了相当高水平的空间集中,并且这种集中程度在过去的十多年里表现出了稳定的增长趋势;对全局的Moran’s I统计分析表明:省际创新活动之间存在着显著的空间自相关(空间依赖性),证明了知识溢出的存在性和空间局限性;对局部的Moran’s I分析进一步揭示了省际创新活动水平的相关模式,Moran散点图刻画了创新活动的空间集聚模式及其时空演变态势。研究结果说明经过十几年的发展,我国省域创新活动的地域性特征十分显著。

关 键 词:创新产出  探索性空间数据分析  溢出  空间自相关  中国  
收稿时间:2011-06-22
修稿时间:2011-10-09

Spatial characteristics and dynamic changes of provincial innovation output in China:An investigation using the ESDA
LI Guo-ping,WANG Chun-yang. Spatial characteristics and dynamic changes of provincial innovation output in China:An investigation using the ESDA[J]. Geographical Research, 2012, 31(1): 95-106. DOI: 10.11821/yj2012010010
Authors:LI Guo-ping  WANG Chun-yang
Affiliation:School of Government, Peking University, Beijing 100871, China
Abstract:Innovation activities in each region not only depend on their own characteristics,but also on those of the regions that form the neighborhood to which it belongs.Regional spillover as a spatial interaction is important in explaining agglomeration,innovation and regional growth.A great deal of literature has deeply dealt with the issue from a spatial perspective since the 1990s,especially in the context of urban and regional studies.Unfortunately,the traditional approaches to regional innovation suppose that each region is independent from others.This paper uses spatial statistical techniques to establish the statistical relations among data according to the geographical locations.It aims to understand the spatial dependence and autocorrelation related to geographical locations.Using the methods of exploratory spatial data analysis(ESDA) and spatial analysis software,this paper analyzes the spatial distribution of innovation outputs,measured by the number of patient applications,throughout 31 Chinese provinces from 1997 to 2008.The visual patent distribution plot has shown the distribution of innovation outputs at the provincial level and its spatial dynamic changes.A significantly high level of spatial concentration of innovation outputs among Chinese provinces has been captured by the computed spatial Gini coefficient and the Concentration Ratio,and the concentration level has increased steadily over the past 10 years.The analysis using the Moran’s I statistics gives the strong evidence of spatial autocorrelation in innovation activities among provinces,while the concentration pattern of innovation activities among provinces and its changes over time have been revealed by using the local Moran’s I and the Moran scatter plot,which indicate the clustering nature of the spatial distribution of provincial innovation activities.Spatial Gini coefficient and Moran’s I index have indicated that innovation activities of Chinese provinces are not randomly distributed.Our findings suggest that innovation activities are spatially differentiated among Chinese provinces over the 10 years,and innovation activities at the provincial level are highly localized.This study can provide a scientific basis for the intuitive expression of the spatial correlation of innovation outputs among provinces,and puts forward that the spatial statistical analysis could present some references valuable for analyzing spatial structure and patterns and policy-making.
Keywords:innovation output  ESDA  spillovers  spatial autocorrelation  China
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地理研究》浏览原始摘要信息
点击此处可从《地理研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号