首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Insights into silicic melt generation using plagioclase, quartz and melt inclusions from the caldera-forming Rotoiti eruption, Taupo volcanic zone, New Zealand
Authors:Victoria Smith  Phil Shane  Ian Nairn
Institution:(1) Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK;(2) School of Geography, Geology and Environmental Science, University of Auckland, Private Bag 92019, Auckland, New Zealand;(3) 45 Summit Road, Rotorua RD5, New Zealand;(4) Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins building, South Parks Road, Oxford, OX1 3QY, UK
Abstract:The Rotoiti (~120 km3) and Earthquake Flat (~10 km3) eruptions occurred in close succession from the Okataina Volcanic Centre at ~50 ka. While accessory mineral geochronology points to long periods of crystallization prior to eruption (104–105 years) and separate thermal histories for the magmas, little was known about the rates and processes of the final melt production and eruption. Crystal zoning patterns in plagioclase and quartz reveal the thermal and compositional history of the magmatic system leading up to the eruption. The dominant modal phase, plagioclase, displays considerable within-crystal zonation: An37–74, ~40–227 ppm MgO, 45–227 ppm TiO2, 416–910 ppm Sr and 168–1164 ppm Ba. Resorption horizons in the crystals are marked by sharp increases (10–30%) in Sr, MgO and XAn that reflect changes in melt composition and are consistent with open system processes. Melt inclusions display further evidence for open system behaviour, some are depleted in Sr and Ba relative to accompanying matrix glass not consistent with crystallization of modal assemblage. MI also display a wide range in XH2O that is consistent with volatile fluxing. Quartz CL images reveal zoning that is truncated by resorption, and accompanied by abrupt increases in Ti concentration (30–80 ppm) that reflect temperature increases ~50–110°C. Diffusion across these resorption horizons is restricted to zones of <20 μm, suggesting most crystallization within the magma occurred in <2000 years. These episodes are brief compared to the longevity (104–105 year) of the crystal mush zones. All textural and compositional features observed within the quartz and plagioclase crystals are best explained by periodic mafic intrusions repeatedly melting parts of a crystal-rich zone and recharging the system with silicic melt. These periodic influxes of silicic melt would have accumulated to form the large volume of magma that fed the caldera-forming Rotoiti eruption.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号