首页 | 本学科首页   官方微博 | 高级检索  
     

气候变化影响下极端水文事件的多变量统计模型研究
引用本文:夏军,佘敦先,杜鸿. 气候变化影响下极端水文事件的多变量统计模型研究[J]. 气候变化研究进展, 2012, 8(6): 397-402. DOI: 10.3969/j.issn.1673-1719.2012.06.002
作者姓名:夏军  佘敦先  杜鸿
作者单位:1.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室2 武汉大学水资源与水电工程科学国家重点实验室3 中国科学院大学
基金项目:国家重点基础研究973项目(2010CB428406);国家自然科学基金(41071025);中国科学院澳大利亚联邦科工组织战略合作项目(GJHZ1223)
摘    要:以黄河流域太原气象站和淮河流域鲁台子水文站为研究对象,利用Copula函数构建气候要素(降水)同极端水文事件(干旱和洪水)之间的多元统计模型,分析不同降水条件下不同等级干旱和洪水的发生概率变化。结果表明,Gumbel Copula能够较好地描述太原站7月份的前期累加降水量和帕默尔干旱指数(PDSI)的相关结构。随着降水量的增加,极端干旱的发生概率逐渐减小,重旱、中旱和轻旱的发生概率则先增加后减小。Clayton Copula能够较好地描述鲁台子水文站前期累加降水量和洪峰流量之间的相关结构。当前期累加降水量大于等于某一定值时,随着年最大洪峰x的增大,发生洪峰≥x的极端洪水事件的概率逐渐减小。在同一个极端洪水发生概率下,前期累加降水量越大,洪峰流量出现大值的可能性越大。

关 键 词:气候变化  极端水文事件  Copula函数  
收稿时间:2012-06-21
修稿时间:2012-09-29

The Multi-Variable Statistical Models of Extreme Hydrological Events Under Climate Change
Xia Jun,She Dunxian,Du Hong. The Multi-Variable Statistical Models of Extreme Hydrological Events Under Climate Change[J]. Progressus Inquisitiones DE, 2012, 8(6): 397-402. DOI: 10.3969/j.issn.1673-1719.2012.06.002
Authors:Xia Jun  She Dunxian  Du Hong
Affiliation:1 Key Laboratory of Water Cycle and Related Land Surface Processes,Chinese Academy of Sciences,Beijing 100101,China;2 State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China;3 University of Chinese Academy of Sciences,Beijing 100049,China
Abstract:The probability change of extreme hydrological events under climate change is analyzed by constructing multi-variable model between climate factors and extreme events. Taiyuan meteorological station in the Yellow River basin and Lutaizi hydrological station in the Huaihe River basin are selected as study area. The results of Taiyuan station show that Gumbel Copula can better simulate the dependence structure of antecedent cumulated precipitation and monthly PDSI series. As the precipitation amount increases, the probability of extreme drought decreases while the probability of severe, moderate and slight drought firstly increases and then decreases. The results of Lutaizi station show that Clayton Copula can better simulate the dependence structure of precipitation and peak of flood. When the precipitation is over or equal to a certain value, the conditional probability of the extreme flood events that peak flow is over or equal to x gradually decreases as the annual maximum peak flow increases. Under the same conditional probability, the peak flow is more likely to get large values when the cumulative precipitation is large.
Keywords:climate chang  extreme hydrological event  Copula function  
本文献已被 CNKI 等数据库收录!
点击此处可从《气候变化研究进展》浏览原始摘要信息
点击此处可从《气候变化研究进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号