首页 | 本学科首页   官方微博 | 高级检索  
     

遗传模拟退火的BP算法在冲击地压中的应用
引用本文:陈刚,潘一山. 遗传模拟退火的BP算法在冲击地压中的应用[J]. 岩土力学, 2003, 24(6): 882-886
作者姓名:陈刚  潘一山
作者单位:1.辽宁工程技术大学 系统科学与数学研究所,辽宁 阜新 123000; 2.辽宁工程技术大学 力学与工程科学系,辽宁 阜新 123000
摘    要:冲击地压的预测、预报的研究,大多数仍停留在简单的统计研究和单因素的预测方面,因而,结果也不十分理想。笔者采用多层前向网络对该问题进行数学建模,网络的训练算法采用基于遗传模拟退火的BP优化算法。该算法是在遗传算法中引入模拟退火机制,将其同BP算法结合,形成一个混合的优化算法。新算法既有神经网络的学习能力和鲁棒性,又有遗传算法的强全局随机搜索能力。同时,利用华丰矿冲击地压的实际监测数据,通过遗传算法的主要性能指标对新算法的参数进行了比较研究,得到优化后的一组参数。利用该参数,对冲击地压的神经网络模型的结构、权值和阈值进行了优化,得到了非全连接的优化神经网络模型。最后,利用该模型对华丰矿冲击地压进行了短期最大震级的预报。预测结果的相对误差率平均为 7.84 %,预测效果比较理想。

关 键 词:冲击地压  BP算法  遗传模拟退火算法  震级预报  
收稿时间:2002-07-19

Application of multilayer perceptrons based on genetic simulated annealing algorithm to rockburst
CHEN Gang,PAN Yi-shan. Application of multilayer perceptrons based on genetic simulated annealing algorithm to rockburst[J]. Rock and Soil Mechanics, 2003, 24(6): 882-886
Authors:CHEN Gang  PAN Yi-shan
Affiliation:1. Research Institute of System Science and Mathmatics, Liaoning Technical University, Fuxin 123000, China; 2. Department of Engineering Mechanics, Liaoning Technical University, Fuxin 123000, China
Abstract:The study of the forecast on rockburst mostly remains at simple statistical study and the forecast of single factor, so the result is not satisfying. This thesis realizes rockburst mathematical model by adopting multilayer forward network and optimization BP algorithm based on genetic simulated annealing algorithm which has been used in the network training perceptrons. This optimization BP algorithm introduces simulated annealing mechanism to genetic algorithm and have it combined with multilayer perceptrons to form a compounding optimization perceptrons. The new perceptrons have both the learning ability of the neural network and robustness, and strong random searching ability of genetic algorithm. At the same time, this thesis makes a contrast study on the parameters of genetic simulated annealing algorithm by the principal performance index of genetic algorithm by using the practical monitoring data of Huafeng Mine rockburst and obtains a set of optimized parameters. By using those parameters, the structure weights and threshold value of the rockburst neural network model is optimized and obtains non-all-connected optimized neural network model. At last, this thesis carries out the short-term maximum magnitude of earthquake on Huafeng Mine rockburst by using this model. The relative error of the forecast is 7.84 % averagely. The forecast effect is comparatively ideal.
Keywords:rockburst  multilayer perceptrons  genetic simulated annealing algorithm  forecast of earthquake intensity
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号