首页 | 本学科首页   官方微博 | 高级检索  
     


A scale-selective multilevel method for long-wave linear acoustics
Authors:Stefan Vater  Rupert Klein  Omar M. Knio
Affiliation:1.Institute of Mathematics,Freie Universit?t Berlin,Berlin,Germany;2.Department of Mechanical Engineering,Johns Hopkins University,Baltimore,USA
Abstract:A new method for the numerical integration of the equations for one-dimensional linear acoustics with large time steps is presented. While it is capable of computing the “slaved” dynamics of short-wave solution components induced by slow forcing, it eliminates freely propagating compressible short-wave modes, which are under-resolved in time. Scale-wise decomposition of the data based on geometric multigrid ideas enables a scale-dependent blending of time integrators with different principal features. To guide the selection of these integrators, the discrete-dispersion relations of some standard second-order schemes are analyzed, and their response to high wave number low frequency source terms are discussed. The performance of the new method is illustrated on a test case with “multiscale” initial data and a problem with a slowly varying high wave number source term.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号