首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post-convection spreading phase in the Northwestern Mediterranean Sea
Institution:1. Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain;2. Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy;3. Departamento de Análisis Matemático, Universidad de Málaga, Málaga, Spain;4. European Commission, Joint Research Center, Institute for Environment and Sustainability, Via E. Fermi 2749, 21027, Ispra, Italy;5. Departamento de Física Aplicada, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
Abstract:This is a study about the spreading of newly formed deep waters following open ocean deep convection in the Northwestern Mediterranean Sea. The main results are from the SOFARGOS large scale float experiment initiated in 1994–1995. During the SOFARGOS project, CTD stations and Lagrangian observations of ocean currents were carried out in the Gulf of Lion from December 1994 to July 1995. Hydrological observations confirmed that deep water formation occurred very early during winter 1994–1995 (late December, early January) in conjunction with atmospheric cooling, deep convection penetrating down to 2000 m in the so-called Medoc area. Numerous eddies (both anticyclonic and cyclonic) drifted away from the convection area and advected newly formed deep waters far away from the source region. In particular, compact anticyclones appeared to be the most coherent (long-lived) eddies and capable of transporting newly formed Western Mediterranean Deep Waters several hundreds of kilometers away from the convection area. Characterized by an inner core of about 5 km in radius, these eddies are submesoscale features in the outer domain and appear as key elements of the open ocean convection processes. During their long journeys, these eddies interacted with larger scale features such as the Northern Boundary Current, the North Balearic Front, topographic Rossby waves, and Sardinian eddies. These interactions influenced the long-term behavior of the eddies (mean drift, composition) and represented an important part of (1) the spreading phase following deep convection and (2) the large scale thermohaline circulation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号