首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies
Authors:Lara Loughrey  Dan Marshall  Peter Jones  Paul Millsteed  Arthur Main
Institution:1. Earth Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
2. Earth Sciences, Carleton University, Ottawa, ON, K1S 5B6, Canada
3. Earth Sciences Research School, Australia National University, Canberra, ACT, Australia
4. Canberra Lapidary Club, Lyons, ACT, Australia
Abstract:The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich ??striped?? colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号