首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The tail of the Storegga Slide: insights from the geochemistry and sedimentology of the Norwegian Basin deposits
Authors:CHARLES K PAULL  WILLIAM USSLER III  W STEVEN HOLBROOK  TESSA M HILL  HAFLIDI HAFLIDASON  WILLIAM WINTERS  THOMAS LORENSON  IVANO AIELLO  JOEL E JOHNSON  EVE LUNDSTEN
Institution:1. Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA(E‐mail: paull@mbari.org);2. University of Wyoming, Laramie, WY 82071, USA;3. University of California‐Davis, Davis, CA 95616, USA;4. University of Bergen, Department of Earth Science, N‐5007 Bergen, Norway;5. United States Geological Survey, Woods Hole, Massachusetts 02543, USA;6. United States Geological Survey, Menlo Park, CA 94025, USA;7. Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA;8. University of New Hampshire, Department of Earth Science, Durham, NH 03824, USA
Abstract:Deposits within the floor of the Norwegian Basin were sampled to characterize the deposition from the Storegga Slide, the largest known Holocene‐aged continental margin slope failure complex. A 29 to 67 cm thick veneer of variable‐coloured, finely layered Holocene sediment caps a homogeneous, extremely well‐sorted, poorly consolidated, very fine‐grained, grey‐coloured sediment section that is >20 m thick on the basin floor. This homogeneous unit is interpreted to represent the uppermost deposits generated by a gravity flow associated with the last major Storegga Slide event. Sediments analogous to the inferred source material of the slide deposits were collected from upslope on the Norwegian Margin. Sediments sampled within the basin are distinguishable from the purported source sediments, suggesting that size sorting has significantly altered this material along its flow path. Moreover, the very fine grain size (3·1 ± 0·3 μm) suggests that the >20 m thick homogeneous unit which was sampled settled from suspension after the turbulent flow was over. Although the turbulent phase of the gravity flow that moved material out into the basin may have been brief (days), significantly more time (years) is required for turbid sediments to settle and dewater and for the new sea floor to be colonized with a normal benthonic fauna. Pore water sulphate concentrations within the uppermost 20 m of the event deposit are higher than those normally found in sea water. Apparently the impact of microbial sulphate reduction over the last ca 8·1 cal ka bp since the re‐deposition of these sediments has not been adequate to regenerate a typical sulphate gradient of decreasing concentration with sub‐bottom depth. This observation suggests low rates of microbial reactions, which may be attributed to the refractory carbon composition in these re‐deposited sediments.
Keywords:Geochemistry  Norweigian Basin  Storegga  turbidity current
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号