首页 | 本学科首页   官方微博 | 高级检索  
     

基于主分量的神经网络水位预报模型应用研究
引用本文:黄海洪,孙崇智,金龙. 基于主分量的神经网络水位预报模型应用研究[J]. 南京气象学院学报, 2005, 28(1): 58-63
作者姓名:黄海洪  孙崇智  金龙
作者单位:广西自治区气象台,广西,南宁,530022
基金项目:国家自然科学基金资助项目(40075021)
摘    要:根据气象和水文资料,以上游面雨量、水位值为预报因子,以西江流域的梧州水位为预报量,发现预报因子与预报量有很好的相关性。采用人工神经网络与主分量分析相结合的方法,建立了梧州水位的预报模型。结果表明,该预报模型对历史样本拟合精度高,试报效果及预报稳定性明显好于传统的神经网络预报模型,可在预报业务中应用。

关 键 词:水位预报 面雨量 神经网络 主分量
文章编号:1000-2022(2005)01-0058-06

Neural Network Prediction Model of Xijiang River Water Level Based on Principal Component Analysis
HUANG Hai-hong,SUN Chong-zhi,JIN Long. Neural Network Prediction Model of Xijiang River Water Level Based on Principal Component Analysis[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(1): 58-63
Authors:HUANG Hai-hong  SUN Chong-zhi  JIN Long
Abstract:The analysis of the meteorological and hydrological data shows that there is close correlation between the water level of the Xijiang river and the upper reach water level and areal mean rainfall.The new neural network prediction model of water level is established based on the principal component analysis(PCA).The comparison between the new model based on PCA and the traditional neural network model indicates that the new model is significantly superior to the traditiona model in prediction accuracy and prediction stability,thus having a good prospect in operational application.
Keywords:water level prediction  areal mean rainfall  neural network  principal component analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号