首页 | 本学科首页   官方微博 | 高级检索  
     


Variable resolution block kriging using a hierarchical spatial data structure
Authors:D. C. Mason  M. O'Conaill  I. McKendrick
Affiliation:Natural Environment Research Council, Unit for Thematic Information Systems, Department of Geography , University of Reading , Reading, RG6 2AB, England , U.K.
Abstract:Abstract

Kriging is an optimal method of spatial interpolation that produces an error for each interpolated value. Block kriging is a form of kriging that computes averaged estimates over blocks (areas or volumes) within the interpolation space. If this space is sampled sparsely, and divided into blocks of a constant size, a variable estimation error is obtained for each block, with blocks near to sample points having smaller errors than blocks farther away. An alternative strategy for sparsely sampled spaces is to vary the sizes of blocks in such away that a block's interpolated value is just sufficiently different from that of an adjacent block given the errors on both blocks. This has the advantage of increasing spatial resolution in many regions, and conversely reducing it in others where maintaining a constant size of block is unjustified (hence achieving data compression). Such a variable subdivision of space can be achieved by regular recursive decomposition using a hierarchical data structure. An implementation of this alternative strategy employing a split-and-merge algorithm operating on a hierarchical data structure is discussed. The technique is illustrated using an oceanographic example involving the interpolation of satellite sea surface temperature data. Consideration is given to the problem of error propagation when combining variable resolution interpolated fields in GIS modelling operations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号