首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Architecture of a forced regressive systems tract in the Turonian Ferron “Notom Delta”, southern Utah, U.S.A.
Authors:Weiguo Li  Janok BhattacharyaYijie Zhu
Institution:a BP America Inc, 501 Westlake Part Blvd., Houston, TX 77079, USA
b Department of Earth and Atmospheric Sciences, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-5007, USA
Abstract:The large-scale stratigraphic architecture of forced regressive deposits has been documented in many previous studies. Bed-scale facies architectural analyses of these deposits, however, are still very limited. The Cretaceous Ferron “Notom Delta” in southern Utah, U.S.A. contains a 20 km dip-oriented exposure of a stepped, forced regressive systems tract. The main focus of this paper is to reconstruct the paleogeography and depositional history of the systems tract based on detailed stratigraphic and facies architectural analysis using 23 geological sections, photomosaics, and walking out of beds.Internally, the systems tract consists of 6 parasequences, 11f to 11a from the oldest to the youngest. During the progradation of parasequences 11f to 11b the paleoshorelines were wave-dominated, as indicated by the abundance of HCS and/or SCS beds, wave-ripple cross-laminated beds, and the occurrence of diverse and robust ichnological suites attributable to the Skolithos and Cruziana Ichnofacies. Progradation of the wave-dominated shorelines resulted in more homogeneous and laterally continuous sand bodies. From 11b to 11a, however, there is a distinct change in paleoshoreline regime from wave-dominated to tide-influenced as indicated by the common occurrence of tidal facies in 11a, including: (1) lenticular, wavy, and flaser bedding and bidirectional dipping cross strata; (2) reactivation surfaces, double-mud drapes, and ripple cross lamination with opposing dips at the toe of large dune-scale cross sets; (3) inclined heterolithic strata (IHS) and sigmoidal bedding with tidal rhythmites; and (4) cyclic vertical variation in facies and bed thickness and the common occurrence of sand-mud couplets. These tide-influenced facies show overall lower bioturbation intensity (BI 0-3). Progradation of the tide-influenced shoreline results in more heterolithic delta-front facies. Tidal and/or tidal-fluvial channels further dissect delta-front sandstones, forming more isolated sand bodies.Data from this study, as well as previous work, show that width and thickness of the forced regressive parasequences are small, typically less than 5 km and 20 m respectively. In subsurface studies, identifying and correlating such small-scale parasequences using sparse data involve significant uncertainties. A combination of the diagnostic features indicating forced regression and different data sets is essential to better constrain the geometry and architecture these small-scale bodies.
Keywords:Forced regression  Ferron &ldquo  Notom delta&rdquo    Facies architecture  Depositional processes  Cretaceous interior seaway
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号