首页 | 本学科首页   官方微博 | 高级检索  
     

风暴尺度集合预报中的混合初始扰动方法及其在北京2012年“7.21”暴雨预报中的应用
引用本文:庄潇然,闵锦忠,王世璋,周凯,蔡沅辰. 风暴尺度集合预报中的混合初始扰动方法及其在北京2012年“7.21”暴雨预报中的应用[J]. 大气科学, 2017, 41(1): 30-42. DOI: 10.3878/j.issn.1006-9895.1605.15233
作者姓名:庄潇然  闵锦忠  王世璋  周凯  蔡沅辰
作者单位:1.南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044
基金项目:国家自然科学基金项目41430427、40975068
摘    要:风暴尺度集合预报系统(Storm-Scale Ensemble Forecast system,简称SSEFs)中集合成员之间发散度不足一直都是研究的难点。本文尝试了将Barnes空间滤波融入到集合转换卡尔曼滤波(ETKF)更新预报系统中的混合初值扰动法。该方案将ETKF方法的小尺度信息与来自于侧边界条件扰动的大尺度信息相结合,缓解了扰动在侧边界不匹配的问题。通过2012年北京“7.21”暴雨并使用邻位方法对比分析了不同初值扰动方案在不同时间尺度与空间尺度上的特征,在此基础上进一步探讨了构造混合初始扰动法的可行性。结果表明:ETKF试验所构造的初始扰动无法与侧边界条件扰动相匹配,混合后的初始扰动可以有效缓解SSEFs中由于初始扰动与侧边界扰动不匹配产生的虚假波动,其中大尺度信息保留较多的混合试验(ETKF80)和动力降尺度方案(Down)在减少虚假波动方面的效果最优;从集合离散度来看,在前期暖区降水阶段ETKF的离散度在小尺度上最大,随着锋面降水的开始,Down的离散度逐渐超过ETKF,而使用各滤波波段构造的混合试验同时具备ETKF与Down二者的特征。选择合理的滤波波段可以获得最为合理的离散度表现(ETKF180),说明仅考虑侧边界匹配(Down和ETKF80)并不能获得最合理的集合离散度,应综合考虑其他因素。从降水概率预报结果来看,选取合适的滤波波段所构造的混合扰动试验同样获得了较好的效果。

关 键 词:风暴尺度集合预报系统   集合转换卡尔曼滤波   混合初始扰动   离散度   概率预报
收稿时间:2015-07-26

A Blending Method for Storm-Scale Ensemble Forecast and Its Application to Beijing Extreme Precipitation Event on July 21, 2012
ZHUANG Xiaoran,MIN Jingzhong,WANG Shizhang,ZHOU Kai and Cai Yuanchen. A Blending Method for Storm-Scale Ensemble Forecast and Its Application to Beijing Extreme Precipitation Event on July 21, 2012[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 30-42. DOI: 10.3878/j.issn.1006-9895.1605.15233
Authors:ZHUANG Xiaoran  MIN Jingzhong  WANG Shizhang  ZHOU Kai  Cai Yuanchen
Affiliation:1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 2100442.Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044
Abstract:In order to overcome the under-dispersive problem in the storm-scale ensemble forecast system (SSEFs), a new blending method to generate initial perturbation is designed and tested for the WRF SSEFs. This new scheme is based on the combination of the ETKF (Ensemble Transform Kalman Filter) and the Barnes filter for scale decomposition. This scheme is applied to the simulation of the Beijing extreme precipitation event on July 21, 2012and the neighborhood methods is employed to verify the performance of this new scheme. Results indicate that the blending method can effectively solve the scale mismatch problem in the lateral boundary in storm-scale ensemble prediction system, in which ETKF80 (with wavelength scale of 180 km) and Down (Dynamical downscaling) show the best overall performance. The Dispersion Fractions Skill Score (DFSS) shows that the ETKF has a larger spread in small scales during the period of warm area precipitation while Down produces a larger spread at large scales during period of frontal precipitation. The experiments with initial perturbations generated by the blending method take advantage of both the ETKF and Down. The ETKF180 (with wavelength scale of 180 km) generates the most reasonable ensemble spreads. Results also indicate that in order to get better ensemble spread in SSEFs, not only the lateral scale mismatch but also some other elements (such as the interaction between different scales of initial perturbation) should be considered. The blending method ETKF180 also improves the precipitation probability forecast.
Keywords:Storm-scale ensemble forecast system  Ensemble transform Kalman filter  Blending initial perturbation  Spread  Probability prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号