首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Testing bedload transport formulae using morphologic transport estimates and field data: lower Fraser River,British Columbia
Authors:Yvonne Martin  Darren Ham
Abstract:Morphologic transport estimates available for a 65‐km stretch of Fraser River over the period 1952–1999 provide a unique opportunity to evaluate the performance of bedload transport formulae for a large river over decadal time scales. Formulae tested in this paper include the original and rational versions of the Bagnold formula, the Meyer‐Peter and Muller formula and a stream power correlation. The generalized approach adopted herein does not account for spatial variability in flow, bed structure and channel morphology. However, river managers and engineers, as well as those studying rivers within the context of long‐term landscape change, may find this approach satisfactory as it has minimal data requirements and provides a level of process specification that may be commensurable with longer time scales. Hydraulic geometry equations for width and depth are defined using morphologic maps based on aerial photography and bathymetric survey data. Comparison of transport predictions with bedload transport measurements completed at Mission indicates that the original Bagnold formula most closely approximates the main trends in the field data. Sensitivity analyses are conducted to evaluate the impact of inaccuracies in input variables width, depth, slope and grain size on transport predictions. The formulae differ in their sensitivity to input variables and between reaches. Average annual bedload transport predictions for the four formulae show that they vary between each other as well as from the morphologic transport estimates. The original Bagnold and Meyer‐Peter and Muller formulae provide the best transport predictions, although the former underestimates while the latter overestimates transport rates. Based on our findings, an error margin of up to an order of magnitude can be expected when adopting generalized approaches for the prediction of bedload transport. Copyright © 2005 John Wiley & Sons, Ltd.
Keywords:bedload transport formulae  morphologic transport estimates  sediment transport  channel morphology  field data
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号