首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic stratigraphy of Waterton Lake, a sediment-starved glaciated basin in the Rocky Mountains of Alberta, Canada and Montana, USA
Authors:Nicholas Eyles  Joseph I Boyce  John D Halfman  Berkant Koseoglu
Institution:

a Environmental Earth Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada

b School of Geography and Geology, McMaster University, Hamilton, ON L8S 4K1, Canada

c Department of Geoscience, Hobart and William Smith Colleges, Geneva, NY 14456, USA

Abstract:Upper and Middle Waterton lakes fill a glacially scoured bedrock basin in a large (614 km2) watershed in the eastern Front Ranges of the Rocky Mountains of southern Alberta, Canada and northern Montana, U.S.A. The stratigraphic infill of the lake has been imaged with 123 km of single-channel FM sonar (‘chirp') reflection profiles. Offshore sonar data are combined with more than 2.5 km of multi-channel, land-based seismic reflection profiles collected from a large fan-delta. Three seismic stratigraphic successions (SSS I to III) are identified in Waterton Lake resting on a prominent basal reflector (bedrock) that reaches a maximum depth of about 250 m below lake level. High-standing rock steps (reigels) divide the lake into sub-basins that can be mapped using lake floor reflection coefficients. A lowermost transparent to poorly stratified seismic succession (SSS I, up to 30 m thick) is present locally between bedrock highs and has high seismic velocities (1750–2100 m/s) typical of compact till or outwash. A second stratigraphic succession (SSS II, up to 50 m thick), occurs throughout the lake basin and is characterised by continuous, closely spaced reflectors typical of repetitively bedded and rhythmically laminated silts and clays most likely deposited by underflows from fan-deltas; paleo-depositional surfaces identify likely source areas during deglaciation. Intervals of acoustically transparent seismic facies, up to 5 m thick, are present within SSS II. At the northern end of Upper Waterton Lake, SSS II has a hummocky surface underlain by collapse structures and chaotic facies recording the melt of buried ice. Sediment collapse may have triggered downslope mass flows and may account for massive facies in SSS II. A thin Holocene succession (SSS III, <5 m) shows very closely spaced reflectors identified as rhythmically laminated fine pelagic sediment deposited from interflows and overflows. SSS III contains Mt. Mazama tephra dated at 6850 yr BP.
Keywords:Rocky Mountains  seismic stratigraphy  glaciated lake basins
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号