首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy of a Stringy Charged Black Hole in the Teleparallel Gravity
Authors:Mustafa Saltı
Institution:(1) Department of Physics, Faculty of Art and Science, Middle East Technical University, 06531 Ankara, Turkey
Abstract:We use the teleparallel geometry analog of the Møller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Møller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. Furthermore, our results also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of energy and momentum.
Keywords:Energy  Stringy charged black hole  Teleparallel gravity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号