Anatomy of a small intraplate earthquake: a dissection of its rupture characteristics using regional data |
| |
Authors: | R. A. W. Haddon John Adams |
| |
Affiliation: | Geological Survey of Canada, Ottawa, Canada, K1A 0Y3. E-mail: |
| |
Abstract: | The magnitude m bLg 5.0 Mont-Laurier earthquake of 1990 October 19, in Quebec, Canada, was one of the largest to have occurred in eastern North America during the past decade. High-frequency ground motions recorded on regional network instruments exceeded values anticipated for an event of its size by a factor of 3. A commonly favoured explanation for the discrepancy is that the source was a rare 'high-stress' event. In this paper, detailed fault-slip models are derived to fit waveform and spectral characteristics of the regional data. The results establish that the effective rupture stress was normal (about 100 bars), that the fault rupture developed asymmetrically, and that the average slip time for points inside the rupture area (approx. 0.1 s) was significantly less than that associated with the standard Brune (1970) source spectral model. The rupture area developed in at least four distinct episodes, each extending the previously ruptured area. Taken together with similar results for the m bLg 6.5 Saguenay earthquake of 1988 November, the results indicate that a widely used assumption in hazard analyses, that earthquake spectra are adequately represented by the standard Brune spectral model, is unreliable for the interpretation and prediction of strong ground motion. |
| |
Keywords: | eastern North America fault slip Green's function intraplate rupture propagation seismic spectra stress drop. |
|
|