首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Natash alkaline volcanic field,Egypt: geochemical and mineralogical inferences on the evolution of a basalt to rhyolite eruptive suite
Institution:1. Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa;2. Department of Geology, Ghent University, Krijgslaan 281 – S8, Gent BE9000, Belgium;3. Department of Analytical Chemistry, Ghent University, Gent BE9000, Belgium;4. Department of Geology and Geochemistry, Vrije Universiteit, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands;5. School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen''s Road, Bristol BS8 1RJ, United Kingdom;6. Department of Geosciences, University of Oslo, PO Box 1047, Blindern N-0316, Norway
Abstract:Extensive lava flows were erupted during the Upper Cretaceous in the Wadi Natash of southern Egypt. The lavas are mainly of alkaline (sodium dominated) composition and include alkali olivine basalt (AOB), hawaiite, mugearite, and benmoreite that intruded with acidic volcanics of trachytic to rhyolitic composition. Abundances of major oxides and trace elements including the REE vary systematically through this compositional spectrum. The gradual decrease of CaO with decreasing MgO is consistent with the dominance of phenocrysts of labradoritic plagioclase (An75–62) and Mg-rich olivine (Fo84–80) in the AOB and hawaiite. Olivine phenocrysts are normally zoned with cores consistent with crystallization from a magma having the bulk-rock composition. The sharp decrease of alkalis at low MgO contents (~0.4% MgO) indicates significant alkali feldspar fractionation during the evolution of trachytes and rhyolites. All Natash lavas show steep chondrite-normalized REE patterns with considerable LREE/HREE fractionation and a regular decrease in La/Lu ratios from the least to the most evolved lavas (La/Lun=12.5?9.5). The low absolute abundances of HREE in basic members reflects residual garnet in the source. The basic lavas have experienced compositional modifications after they segregated from the source as evidenced by lower averages of Mg# (51), Ni (134) and Cr (229) in the AOB. Much of this variation can be explained by variable degrees of polybaric fractional crystallization. Petrographic and geochemical data supported by quantitative modelling suggest the evolution of the Natash Lavas from a common AOB parent in multiple, short-lived magma chambers. In agreement with the phenocryst mineralogy of the Natash lavas, the geochemical models suggest that with increasing degree of differentiation, Mg-rich olivine, calcic plagioclase, and augite are joined and progressively substituted by ferrohedenbergite, alkali feldspars and magnetite. The OIB (ocean island basalt)-like nature of the AOB and hawaiite lavas suggests that the volumetrically dominant source component is the asthenospheric mantle. A mantle-plume source is suggested for the Natash basaltic lavas, with the lavas being generated by partial melting of a garnet peridotite in the asthenosphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号