首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence
Authors:S E Agarry  B O Solomon
Institution:1. Biochemical Engineering Research Unit, Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
2. Biochemical Engineering Research Unit, Department of Chemical Engineering, Obafemi Awolowo University, Ile-ife, Nigeria
Abstract:The potential of various organisms to metabolize organic compounds has been observed to be a potentially effective means in disposing of hazardous and toxic wastes. Phenols and their compounds have long been recognized as one of the most recalcitrant and persistent organic chemicals in the environment. The bioremediation potential of an indigenous Pseudomonas fluorescence was studied in batch culture using synthetic phenol in water in the concentration range of (100–500) mg/L as a model limiting substrate. The effect of initial phenol concentration on the degradation process was investigated. Phenol was completely degraded at different cultivation times for the different initial phenol concentrations. Increasing the initial phenol concentration from 100 mg/L to 500 mg/L increased the lag phase from 0 to 66 h and correspondingly prolonged the degradation process from 84 h to 354 h. There was decrease in biodegradation rate as initial phenol concentration increased. Fitting data into Monod kinetic model showed the inhibition effect of phenol The kinetic parameters have been estimated up to initial phenol concentration of 500 mg/ L. The rsmax decreased and Ks increased with higher concentration of phenol. The rsmaxhas been found to be a strong function of initial phenol concentration. The culture followed substrate inhibition kinetics and the specific phenol consumption rates were fitted to Haldane, Yano and Koga, Aiba et al., Teissier and Webb models. Between the five inhibition models, the Haldane model was found to give the best fit. Therefore, the biokinetic constants estimated using these models showed good potential of the Pseudomonas fluorescence and the possibility of using it in bioremediation of phenol waste effluents.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号