首页 | 本学科首页   官方微博 | 高级检索  
     


Longitudinal dispersion in wave-current-vegetation flow
Authors:S. Patil  X. Li  C. Li  B. Y. F. Tam  C. Y. Song  Y. P. Chen  Q. Zhang
Affiliation:(1) Hong Kong Polytechnic University, Kowloon, Hong Kong;(2) Beijing IS & T University, Beijing, China;(3) Tianjin University, Tianjin, China
Abstract:The flow, turbulence, and longitudinal dispersion in wave-current flow through submerged vegetation are experimentally examined. Laboratory experiments are carried out by superimposing progressive waves on a steady flow through simulated submerged vegetation. The resultant wave-current-vegetation interaction shows strong interface shear with increase in the velocity due to the wave-induced drift. The increase in turbulence in the region of vegetation is found to be about twice higher than in the no-wave case due to the additional mixing by wave motions. Solute experiments are conducted to quantify the wave-current-vegetation longitudinal dispersion coefficient (WCVLDC) by the routing method and by defining length and velocity scales for the wave-current-vegetation flow. An empirical expression for the WCVLDC is proposed. Although the increase in vertical diffusivity is observed as compared with bare-bed channels, the shear effect is stronger, which increases the value of the WCVLDC. The study can be a guideline to understand the combined hydrodynamics of waves, current, and vegetation and quantify the longitudinal dispersion therein. Published in Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 50–67, January–February, 2009.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号