首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection
Institution:1. Department of Earth Sciences, University of Hong, Pokfulam Road, Hong Kong;2. Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan;3. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, 152-8581 Tokyo, Japan;4. Earthquake Research Institute, University of Tokyo, Bunkyo, 113-0032 Tokyo, Japan
Abstract:We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ~12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.
Keywords:Core–mantle evolution  Hydrous mantle convection  Ocean
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号