首页 | 本学科首页   官方微博 | 高级检索  
     

基于GIS与BP神经网络的采空塌陷易发性预测
引用本文:张国丽,杨宝林,张志,王少军. 基于GIS与BP神经网络的采空塌陷易发性预测[J]. 热带地理, 2015, 35(5): 770-776. DOI: 10.13284/j.cnki.rddl.002756
作者姓名:张国丽  杨宝林  张志  王少军
作者单位:(中国地质大学 a.公共管理学院;b.地球科学学院,武汉 430074)
基金项目:中国地质调查局“湖北省矿山环境监测”(1212011220068);“西部艰险复杂地区遥感地质调查应用技术研究”(12120113099900)
摘    要:以湖北省鄂州程潮铁矿和黄石大冶铁矿为例,利用GIS空间分析功能对研究区数据进行提取分级、赋值统计及归一化等处理,构建了包括高程、坡度、地层、地下开采点的分布密度、相距最近地下开采点的距离、开采厚度与深度比值、蚀变接触带缓冲区、地下水深度以及地表地物类型的矿区采空塌陷易发性评价指标数据集;借助IDL语言调用Matlab神经网络工具箱,将研究区2011和2012年的指标数据集作为输入数据,塌陷易发性作为期望输出,建立基于BP神经网络的矿区采空塌陷易发性预测模型;通过选取并优化训练样本,实现对2013年矿山塌陷易发性的预测。结果表明,高易发区及以上的区域包含89.91%的采空塌陷,随着易发等级的提高,采空塌陷面积占易发等级面积比也随之增大;采空塌陷的分布具有明显的地带性,高易发区基本沿着岩体与围岩的接触带分布。模型解决了塌陷预测中的非线性映射问题,预测结果与实际调查情况基本吻合。BP神经网络模型与GIS技术相结合预测矿区采空塌陷的易发性具有可行性。

关 键 词:GIS  BP神经网络  采空塌陷  易发性预测  

Susceptibility Prediction of Underground Mining Collapse Based on GIS and BP Neural Network
ZHANG Guoli,YANG Baolin,ZHANG Zhi,WANG Shaojun. Susceptibility Prediction of Underground Mining Collapse Based on GIS and BP Neural Network[J]. Tropical Geography, 2015, 35(5): 770-776. DOI: 10.13284/j.cnki.rddl.002756
Authors:ZHANG Guoli  YANG Baolin  ZHANG Zhi  WANG Shaojun
Affiliation:(a.School of Public Management;b.School of Earth Sciences,China University of Geosciences,Wuhan 430074,China)
Abstract:By using GIS, spatial analyses, including extraction, classification, valuation, statistics and normalization, were made with the data of the study areas in Chengchao Iron Mine and Daye Iron Mine of Hubei province. An index data set, including elevation, slope, strata, the recent distance from underground mines,the distribution density of underground mines, the ratio of mining thickness and depth, the buffer of alteration contact zone, groundwater depth, and the surface feature types, was constructed to assess the susceptibility of collapse in mining area. With IDL language to call Matlab neural network toolbox, the index data set of the study area in 2011and 2012 was used as input data, and the susceptibility was used as expected output. So the model based on BP neural network for predicting the susceptibility of underground mining collapse was constructed. By selecting and optimizing the training sample, this model realized the prediction for the susceptibility of collapse in 2013. The results indicated that the underground mining collapse area accounted for 89.91% of the total area highly susceptible to collapse; with the increase of the susceptibility level, the ratio of the underground mining collapse area to the susceptible area increased; the distribution of underground mining collapse was of obvious zonality, and the high susceptibility area distributed basically along the contact zone between the rock mass and the surrounding rock. The model solved the problem of nonlinear mapping in collapse prediction, as the predicted results were in accord with the actual survey. The results show that BP neural network model and GIS technology for evaluating the susceptibility of underground mining collapse would have a certain feasibility.
Keywords:GIS   BP neural network   underground mining collapse   susceptibility prediction  
本文献已被 万方数据 等数据库收录!
点击此处可从《热带地理》浏览原始摘要信息
点击此处可从《热带地理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号