首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Prospect Alkaline Diabase-Picrite Intrusion New South Wales, Australia
Authors:WILSHIRE  H G
Institution:Australian National University Canberra, Australia
Abstract:The Prospect intrusion is a dish-shaped alkaline diabase-picritemass 315–400 ft thick intruded into shale at a depth ofabout 600 ft. Picrite, containing more than 25 per cent olivine,occupies the lower half of the intrusion. In the upper half,alkaline diabase, averaging less than 5 per cent olivine, isconcentrated under structural highs of the contact, and alkalineolivine diabase, containing 10 to 25 per cent olivine, is concentratedunder structural lows. These rocks are separated from the shaleby a fine-grained chilled margin. Vertical sections through the picrite zone show a regular antipatheticvariation of modal olivine and plagioclase with a zone of maximumolivine concentration near the bottom; bulk rock compositionsshow an antipathetic relation between MgO plus total iron andall other constituents. Modal and bulk composition variationsare more erratic in the upper half of the intrusion, but analcite,alkali feldspar, and opaque minerals reach maximum concentrationsin this part of the intrusion. The pyroxene content remainsnearly constant in the major rock types. Trends of olivine andplagioclase composition and grain size vary regularly with heightin the intrusion and cross boundaries between major rock typeswithout deflexion. Olivine becomes progressively more fayaliticfrom the base of the picrite zone to the upper chilled margin,but the plagioclase curve has a trend toward more calcic compositionsin the picrite zone. Mean sizes of plagioclase, pyroxene, andolivine increase upwards between the chilled margins. The lower chilled margin is slightly less mafic than the bulkcomposition of the intrusion and may represent a pre-emplacementdifferentiate, but the major part of the differentiation occurredduring emplacement at the present site. Grain size and otherdata indicate that crystallization took place more rapidly fromthe base than from the top of the intrusion, and a variety ofinternal structures indicate that crystallization and differentiationtook place as the magma was intruded over a considerable periodof time. As consolidation of the intrusion proceeded, the liquid becameenriched in all constituents except magnesium and ferrous ironuntil consolidation of alkaline diabase began (when about 70per cent of the whole intrusion had solidified); at that stagethe proportion of calcium, titanium, and ferric iron in theliquid was reduced and the proportion of silica, alumina, andalkalis increased. Processes of differentiation that contributed most to the originof the main rock types are: diffusion, independently of crystallization,of volatiles, alkalis, and possibly calcium into the structurallyhigh parts of the intrusion; gravity accumulation of olivinethat crystallized a short distance above the main front of consolidationas it moved upwards from the base of the intrusion; and upwarddiffusion of salic constituents and downward diffusion of maficones over concentration gradients produced by crystallization. Removal of volatiles from the lower part of the intrusion beforecrystallization reduced the oxidation ratio in the liquid andresulted in a low proportion of ferric iron minerals; crystallizationof abundant olivine (average composition about Fo70), however,prevented enrichment of the liquid in iron. Addition of volatilesto the upper part of the intrusion retarded crystallizationand raised the oxidation ratio to a level at which a relativelyhigh proportion of ferric iron minerals crystallized. Subordinate processes that contributed to the formation of themain rock types as well as to less abundant ones include gravityaccumulation of heavy minerals that were dispersed in the magmaat the time of emplacement, filter pressing caused by localbuttressing around irregularities of the contact, crystal sortingby viscous flow, and gas transfer. Pegmatitic differentiates are ascribed to a complex diffusionprocess along pressure and concentration gradients caused byshear on laminar flow planes. Syenite may have originated byreplacement of pegmatite, but aplites occupy true dilationaistructures and apparently represent liquid remaining after crystallizationof the adjacent rock.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号