首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrite–anhydrite–magnetite–pyroxene-type deposits and coexisting hydrothermal fluids in Mesozoic volcanic basins, Yangtze River Valley, China
Authors:Ronghua Zhang  Xuetong Zhang  Shumin Hu
Institution:aMLR Key Laboratory of Metallogeny and Mineral Assessment, Laboratory of Geochemical Kinetics, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Baiwanzhuang Road 26, Beijing 100037, China
Abstract:Anhydrite–pyrite–magnetite–pyroxene–type deposits occur in the Mesozoic volcanic areas of the Middle–Lower Yangtze Valley in China. These deposits are hosted in alkaline basaltic rocks, and are generally accompanied by melanocratic and leucocratic alteration zones, both of which are characterized by a distinct vertical zonation pattern. Investigation of these zones indicates that the chemical compositions of solid solutions and polymorphs of various minerals vary spatially in the alteration profile, upwards from the lowest level, and outwards from the center.Here we report a case study on the Luohe deposit. In the melanocratic-alteration zone, the composition of magnetite (including trace elements Ti, V, Mg, Mn), pyroxene (Mg, Fe2+, Fe3+, Al2O3), plagioclase (AnxAb1 − x), pyrite (Co, Ni) and apatite (F, CeO2 + Y2O3 + La2O3) changes with depth. The isotherms of hydrothermal fluids determined from fluid inclusion data, including homogenization temperature and salinity, also vary with depth.Activity diagrams were constructed from mineral and isotherm analysis to estimate the chemical constraints on the alteration-mineral assemblages and the coexisting hydrothermal solutions for the Na2O–K2O–CaO–MgO–FeO–Fe2O3–A12O3–SiO2–H2SO4–H2S–HCI–H2O system at 350 to 600 °C and 500 bars (50 MPa), assuming that the major alteration mineral assemblages along the profile reflect the nature of the coexisting hydrothermal solutions. The activity diagrams adopted the major minerals as buffers to fix the activities of the aqueous species in the system, simulating the physicochemical conditions of the magnetite–anhydrite–pyroxene equilibrium and of solid solutions of diopside–hedenbergite, grossular–andradite and anorthite–albite found in the profile.This study provides an approach to modeling the chemical constraints of coexisting fluids in ore-alteration zones based on field observations.
Keywords:Anhydrite&ndash  magnetite&ndash  pyroxene mineral assemblage  Hydrothermal alteration zone  Temperature gradient  Chemical constraint  Activity diagram
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号