首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single zircon ages for felsic to intermediate rocks from the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses, northern Kaapvaal Craton, South Africa
Authors:A Krner  P Jaeckel  G Brandl
Institution:1 Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany;2 Max-Planck-Institut für Chemie, Postfach 3060, 55060 Mainz, Germany;3 Council for Geoscience, PO Box 620, Pietersburg 0700, South Africa
Abstract:Previous models for the temporal evolution of greenstone belts and surrounding granitoid gneisses in the northern Kaapvaal Craton can be revised on the basis of new single zircon ages, obtained by conventional U---Pb dating and Pb---Pb evaporation. In the Pietersburg greenstone belt, zircons from a metaquartz porphyry of the Ysterberg Formation yielded an age of 2949.7±0.2 Ma, while a granite intruding the greenstones, and deformed together with them, has an age of 2853 + 19/−18 Ma. These data show felsic volcanism in this belt to have been coeval with felsic volcanism in the Murchison belt farther east, and the date of 2853 Ma provides an older age limit for deformation in the region. In contrast, a meta-andesite of the Giyani greenstone belt has a zircon age of 3203.3±0.2 Ma, while a younger and cross-cutting feldspar porphyry has an emplacement age of 2874.1±0.2 Ma. The meta-andesite is intercalated with various mafic and ultramafic rocks and, therefore, the age of 3.2 Ga appears plausible for the bulk of the Giyani greenstones.Granitoid gneisses surrounding the Pietersburg and Giyani belts vary in composition from tonalite to granite and texturally from well-layered to homogeneous but strongly foliated. These rocks yielded zircon ages between 2811 and 3283 Ma. The pre-3.2 Ga gneisses are polydeformed and may have constituted a basement to the Giyani greenstone sequence, while the younger gneisses are intrusive into the older gneiss assemblage and/or into the greenstones. The Giyani and Pietersburg belts probably define two separate crustal entities that were originally close together but were later displaced by strike-slip movement.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号