首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuous 60-year stable isotopic and earth-alkali element records in a modern laminated tufa (Jaruga,river Krka,Croatia): Implications for climate reconstruction
Authors:Sonja Lojen  Andrej Trkov  Janez ??an?ar  Juan A Vázquez-Navarro  Neven Cukrov
Institution:1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Prosp. Akademika Koptyuga 3, Novosibirsk 630090, Russia;2. Government Scientific Institution Department of Marine Geology and Sedimentary Ore Formation, National Academy of Sciences of Ukraine, 55B, O. Gonchar Street, Kiev 01601, Ukraine
Abstract:A continuous 60-year record (1938–1998) of stable isotope compositions of carbon and oxygen, as well as trace metal (Mg, Sr, Ba) concentrations in a laminated calcite crust precipitated in a short artificial tunnel on a non-equilibrium groundwater-fed karstic river is presented. Chemical and isotopic records have been compared to hydrometeorological data, available for the last 48 years. An attempt is made to relate isotopic and geochemical variations in the crust to environmental parameters, such as temperature, precipitation and changes in vegetation cover, as well as to postdepositional recrystallisation of the older crust material. Isotopic composition of the crust is largely influenced by non-equilibrium precipitation, which favours the incorporation of isotopically depleted C and O into the carbonate. Furthermore, because of the complicated hydrological situation, there is no observable correlation between the stable oxygen isotope composition of water and temperature. The result is that the 18O isotopic thermometers overestimate the measured precipitation temperatures. Temperatures calculated from Mg/Ca ratios of water and the carbonate match the δ18O palaeotemperatures within ± 2.4 °C in the older part of the crust, precipitated before the onset of industrial pollution of the river. It was demonstrated that the application of Mg palaeothermometry in natural systems, where the Mg/Ca ratio of water is influenced not only by temperature, but also by other environmental parameters such as precipitation, surface runoff, groundwater retention time and anthropogenic influences, is subject to a large uncertainty, up to 10 °C.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号