首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A world without Greenland: impacts on the Northern Hemisphere winter circulation in low- and high-resolution models
Authors:M M Junge  R Blender  K Fraedrich  V Gayler  U Luksch  F Lunkeit
Institution:(1) Meteorologisches Institut, Universität Hamburg, Hamburg, Germany;(2) Modelle und Daten am Max-Planck-Institut für Meteorologie, Hamburg Bundesstrasse 55, 20146 Hamburg, Germany
Abstract:To investigate the effect of Greenlandrsquos orography on the northern hemisphere winter circulation experiments with an atmospheric GCM are conducted: a perturbed integration where standard orography is reduced to sea level in the Greenland area is compared to a standard orography control integration. The outcome of these experiments suggests that the existence of high mountains at Greenland causes a reinforcement of the stationary wave field in the Atlantic sector, colder temperatures to the west of Greenland and warmer temperatures to the east and south, over the North Atlantic. The impact on the flow field cannot be understood in the framework of standing Rossby waves, but it indicates a resonance between remotely forced stationary waves and local (thermo-) dynamics. The pattern of the North Atlantic Oscillation (NAO), in particular the northern centre, lies further to the east in the flat-Greenland experiment compared to the control run and the observations. Together with the fact that the climatological low-pressure system around Iceland hardly shifts, this suggests that the location of the NAO is not necessarily tied to the time mean pressure distributions. Considering the model resolution as a parameter, experiments with a high resolution (T106) suggest that the near-field changes are represented sufficiently by a T42 resolution, a standard resolution used in state-of-the-art coupled climate models. In contrast, far-field changes depend critically on model resolution. Hemispheric circulation and temperature changes differ substantially from low to high resolution, and generalized statements about the impact of Greenlandrsquos orography cannot be made.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号