首页 | 本学科首页   官方微博 | 高级检索  
     

基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测
引用本文:周定义, 左小清, 赵志芳, 喜文飞, 葛楚. 2023. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报, 42(10): 1774-1783. doi: 10.12097/j.issn.1671-2552.2023.10.013
作者姓名:周定义  左小清  赵志芳  喜文飞  葛楚
作者单位:1.云南大学国际河流与生态安全研究院, 云南 昆明 650050; 2.昆明理工大学国土资源工程学院, 云南 昆明 650093; 3.云南大学地球科学学院, 云南 昆明 650050; 4.自然资源部三江成矿作用及资源勘查利用重点实验室, 云南 昆明 650051; 5.云南省三江成矿与资源勘查利用重点实验室, 云南 昆明 650051; 6.云南省国产高分卫星遥感地质工程研究中心, 云南 昆明 650050; 7.云南省中老孟缅自然资源遥感监测国际联合实验室, 云南 昆明 650051; 8.昆明市规划设计研究院有限公司, 云南 昆明 650041
基金项目:国家自然科学基金项目《基于张量分解的分布式目标InSAR相位估计与形变模型解算》(批准号:42161067);;云南省应用基础研究计划面上项目《基于全卷积神经网络的多源遥感影像变化检测》(编号:2018FB078);;云南省教育厅科学研究基金项目《顾及InSAR监测适宜性并引入形变速率分级的滑坡敏感性评价新方法》(编号:2023Y0196);
摘    要:针对现有城市地面沉降预测方法过度依赖沉降数据、模型单一等问题,以云南省昆明市主城区为研究对象,从多时序多因子角度提出一种改进BP神经网络在城市地面沉降中的预测方法。首先,利用SBAS-InSAR技术获取主城区地面沉降监测值,然后通过SPSSAU软件中的灰色关联分析和因子分析选取主城区地面沉降的影响因子,并将其与获取的沉降监测值从多因子多时序角度构建GA-BP和PSO-BP预测模型,最后,得出最优的预测模型并进行预测性能验证。实验结果表明:利用SBAS-InSAR能有效监测城市地面沉降;GA-BP算法相比PSO-BP算法在城市地面沉降预测中性能更好、精度更高;该方法可对长时间、大范围城市地面沉降预测和对某一沉降点多期沉降趋势进行预测。该方法可作为城市地面沉降预测的有效手段,为政府部门决策提供了一种高效快速的方法。

关 键 词:SBAS-InSAR   地面沉降   影响因子   BP算法
收稿时间:2021-05-10
修稿时间:2022-06-12

Prediction of urban land subsidence by SBAS-InSAR and improved BP neural network
ZHOU Dingyi, ZUO Xiaoqing, ZHAO Zhifang, XI Wenfei, GE Chu. 2023. Prediction of urban land subsidence by SBAS-InSAR and improved BP neural network. Geological Bulletin of China, 42(10): 1774-1783. doi: 10.12097/j.issn.1671-2552.2023.10.013
Authors:ZHOU Dingyi  ZUO Xiaoqing  ZHAO Zhifang  XI Wenfei  GE Chu
Affiliation:1.Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650050, Yunnan, China; 2.School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; 3.School of Earth Sciences, Yunnan University, Kunming 650050, Yunnan, China; 4.Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, MNR, Kunming 650051, Yunnan, China; 5.Yunnan Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, Kunming 650051, Yunnan, China; 6.Research Center of Domestic High-resolution Satellite Remote Sensing Geological Engineering, Kunming 650500, Yunnan, China; 7.Yunnan International Joint Laboratory of China-Laos-Bangladesh-Myanmar Natural Resources Remote Sensing Monitoring, Kunming 650051, Yunnan, China; 8.Kunming Urban Planning & Design Institute Co., Ltd., Kunming 650041, Yunnan, China
Abstract:In response to the issues of excessive reliance on subsidence data and a lack of model diversity in existing urban ground subsidence prediction methods, this study focuses on the main urban area of Kunming City, Yunnan Province. A novel approach for predicting urban ground settlement is proposed, incorporating a multi-temporal sequence and multifactor perspective into the improved BP neural network. Firstly, SBAS-InSAR technology is utilized to acquire monitoring values of ground settlement in the main urban area. Subsequently, gray correlation analysis and factor analysis in SPSSAU software are employed to identify the influencing factors of ground settlement in this specific area. Based on the obtained settlement monitoring values and the identified influencing factors, GA-BP and PSO-BP prediction models are constructed from a multifactor multi-temporal sequence viewpoint. The optimal prediction model is determined and its performance is evaluated through comprehensive validation. Experimental results demonstrate that SBAS-InSAR effectively monitors urban ground settlement, while the GA-BP algorithm outperforms the PSO-BP algorithm in terms of prediction accuracy and overall performance. This method allows for long-term and large-scale predictions of urban ground settlement, as well as forecasting the settlement trends of specific points over multiple periods. Consequently, it serves as an effective tool for urban ground settlement prediction, providing governmental departments with an efficient and fast decision-making approach.
Keywords:SBAS-InSAR  subsidence monitoring  influence factor  BP algorithm
点击此处可从《地质通报》浏览原始摘要信息
点击此处可从《地质通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号