首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rare earth element behavior and Pb,Sr, Nd isotope systematics in a heavy metal contaminated soil
Institution:1. Department of Earth Sciences, University of Florence, Piazzale Cascine 15, 50144 Firenze, Italy;2. Dipartimento di Scienze Agrarie Forestali e Alimentari, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy;3. Department of Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy;4. Department of Earth and Environmental Sciences, Milano Bicocca University, Piazza della Scienza, 1, 20123 Milano, Italy
Abstract:The aim of this study is to characterize the processes and phases which control migration and retention of rare earth elements (REE) in a heavy metal contaminated soil. In addition to concentration data, we used Pb, Sr and Nd isotopic compositions in order to distinguish between natural and anthropogenic trace metals and to characterize the phases leached away during the sequential extraction procedure.The samples were sequentially extracted in 3 steps with 1 N acetic acid (HAc), 1 N HCl and 1 N HNO3. The Pb isotope data showed that anthropogenic Pb had mainly been retained in the uppermost 10 cm by the organic matter of the topsoil. The87Sr/86Sr ratios of the HAc extracts are almost constant and indicate that soil carbonate is derived from regionally outcropping carbonate-rich sediments. Most HCl and HNO3 extracts have more radiogenic Sr isotopic compositions, but it is unclear whether this reflects a growing influence of anthropogenic or silicate-derived Sr.The depth distribution of the REE is mainly controlled by two different parameters: soil pH for the HAc extractable REE and Fesingle bondMn oxides for the REE in the HCl and HNO3 extracts. A part of the HNO3 extractable REE was also bound to the organic matter of the topsoil. The REE concentrations in the HAc extractable phase increase with depth and increasing soil pH, which indicates that they are derived from the surface and hence are of anthropogenic origin. This is confirmed by143Nd/144Nd isotope ratios which show a mixing between a natural end-member at the top and an anthropogenic end-member at the base of the profile. We assume that the anthropogenic REE were transported in dissolved form as carbonate complexes and then precipitated during downward migration as soil pH increased.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号