首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Differential response of U-Pb systems in coexisting accessory minerals,Winnipeg River Subprovince,Canadian Shield: implications for Archean crustal growth and stabilization
Authors:F Corfu
Institution:(1) Ontario Geological Survey, c/o Department of Geology, Royal Ontario Museum, 100 Queen's Park, M5S 2C6 Toronto, Ontario, Canada
Abstract:The U-Pb isotopic systems of zircon, monazite, titanite and some apatite and the Pb isotopic composition of K-feldspar have been investigated in three areas of the Winnipeg River Subprovince (WRS) of the Superior Province, Canada, in order to define the timing of magmatic and metamorphic processes in this Archean gneissic-granitoid terrain.The new data together with published results define the following stages in the evolution of the WRS: (1) an extended period of early crustal growth punctuated by the episodic generation of tonalite. New ages include 3170+20/s-5 Ma, 2875+20/s-5 Ma and 2840+20/s-5 Ma for tonalitic gneisses at Cedar Lake, Kenora and Daniels Lake, respectively. (2) This early evolution was concluded by about 2760 Ma after emplacement of tonalite-granodiorite at Cliff Lake and was followed by a period of magmatic quiescence between about 2760 and 2710 Ma that contrasts with the intensive igneous activity characterizing the evolution of neighbouring greenstone belts. (3) A major episode of magmatism, deformation and metamorphism affected the Kenora and Daniels Lake areas between about 2710 and 2700 Ma. (4) A younger event caused deformation, metasomatism and amphibolite to granulite grade metamorphism at Cedar Lake and Daniels Lake at about 2680 Ma. (5) A subsequent, protracted period of low grade activity reset or (re-)crystallized titanite and apatite defining ages that scatter between about 2640 and 2520 Ma at Cedar and Daniels Lake but not in Kenora where titanite closed by about 2690 Ma. The 2680 Ma metamorphism may have been triggered in part by crustal thickening due to nappe thrusting but the subsequent period of lower grade activity requires the protracted addition of heat and/or fluids probably derived from magmatic and metamorphic processes continuing deep in the crust.The isotopic compositions of K-feldspars are relatively homogeneous and indicate mixing of Pb evolved in different reservoirs. The general enrichment in 207Pb with respect to normal terrestrial Pb reflects the protracted Archean evolution of the terrain.Now-coexisting minerals were formed and closed isotopically at different stages of the complex evolution and were selectively involved or excluded from isotopic equilibration with each other or with external systems such as hydrothermal fluids. This cautions against the indiscriminate interpretation of isotopic values obtained from whole rock systems in such complex terrains.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号