首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China
Authors:Jin-Fang Yin  Dong-Hai Wang  Zhao-Ming Liang  Chong-Jian Liu  Guo-Qing Zhai  Hong Wang
Institution:1.State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing,China;2.Department of Earth Science,Zhejiang University,Hangzhou,China;3.Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou,China
Abstract:Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation, and the surface latent heating has only a slight impact on the precipitation intensity. The results indicate that microphysical latent heating might be an important factor for severe precipitation forecast in the warm sector over southern China. Surface sensible heating can have considerable influence on the precipitation spatial distribution and should not be neglected in the case of weak large-scale conditions with abundant water vapor in the warm sector.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号