首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A New Code for Nonradial Stellar Pulsations and its Application to Low-Mass, Helium White Dwarfs
Authors:AH Córsico  OG Benvenuto
Institution:(1) Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata, Argentina
Abstract:We present a finite difference code intended for computing linear, adiabatic, non radial pulsations of spherical stars. This code is based on a slight modification of the general Newton-Raphson technique in order to handle the relaxation of the eigenvalue(square of the eigenfrequency) of the modes and their corresponding eigenfunctions. This code has been tested computing the pulsation spectra of polytropic spheres finding a good agreement with previous work. Then, we have coupled this code to our evolutionary code and applied it to the computation of the pulsation spectrum of a low mass, pure-helium white dwarf of 0.3 M for a wide range of effective temperatures. In making this calculation we have taken an evolutionary time step short enough such that eigenmodes corresponding to a given model are used as initial approximation to those of the next one. Specifically, we have computed periods, period spacing, eigenfunctions, weight functions, kinetic energies and variational periods for a wide range of modes. To our notice this is the first effort in studying the pulsation properties of helium white dwarfs. The solution we have found working with these realistic white dwarf models are in good accord with the predictions of the asymptotic theory of Tassoul (1980) for high order modes. This indicates that the code presented here is able to work adequately also with realistic stellar models. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号