首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and petrogenesis of carbonatites from South Nam Xe,Lai Chau area,northwest Vietnam
Authors:Thuy Nguyen Thi  Hideki Wada  Tsuyoshi Ishikawa  Taketo Shimano
Institution:1. Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
2. Institute of Geosciences, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
3. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe-otsu, Nankoku, Kochi, 783-8502, Japan
4. Graduate school of Environment and Disaster Research, Tokoha University, 325 Oobuchi, Fuji, Shizuoka, 417-0801, Japan
Abstract:This paper presents a study of the petrography, mineral chemistry, geochemistry, and Sr–Nd–Pb–C–O isotope systematics of carbonatite dykes and associated rocks from the northeastern part of the Song Da intracontinental rift in South Nam Xe (northwest Vietnam) aimed at constraining the origin of the carbonatite magmas. The carbonatites are characterized by SiO2 < 12.18 wt.% and by wide ranges in FeO, MgO and CaO content that define them as calciocarbonatite and ferrocarbonatite. On U–Th–Pb isochron diagrams, whole rocks and mineral separates from the ferrocarbonatites form linear arrays corresponding to ages of 30.2–31.6 Ma (Rupelian, Oligocene). The South Nam Xe carbonatites are extremely enriched in Sr, Ba, and light rare earth elements (LREE), and depleted in high field strength elements (HFSE) (e.g. Ti, Nb, Ta, Zr and Hf). The age–corrected Sr–Nd–Pb isotope ratios and C isotope data are relatively uniform (87Sr/86Sr(t) = 0.708193–0.708349; 143Nd/144Nd(t) = 0.512250–0.512267; εNd(t) = ?6.46 to ?6.80; 206Pb/204Pb(t) = 18.26–18.79; 207Pb/204Pb(t) = 15.62–15.64; 208Pb/204Pb(t) = 38.80–39.38; δ13CV-PDB = –2.7?‰ to ?4.1?‰). These isotopic compositions indicate source contamination that occurred before the production of the carbonatite magmas, and did not change noticeably during or after emplacement. The variation in oxygen isotopes is consistent with the change in mineral compositions and trace element abundances: the lower δ18O values (9.1–11.0?‰) coupled with Sr-rich, Mn-poor calcite, and igneous textures such as triple junctions among calcite grain boundaries, define a magmatic origin. However, the elevated δ18O values of the ferrocarbonatites (12.0–13.3?‰) coupled with a volatile-bearing mineral assemblages (including REE fluorcarbonates, sulfates, sulfides and fluorite) may be due to interaction with meteoric water during low-temperature alteration. High δ13C values and Sr–Pb ratios, and low Rb/Sr (0.00014–0.00301), Sm/Nd (0.089–0.141) and 143Nd/144Nd ratios, coupled with very high Sr-Nd concentrations, suggest the involvement of an enriched mantle component, which probably resulted from metasomatism due to the migration of subducted material. Because of the lack of tectonic data and the limited number of samples studied, this conclusion is still ambiguous and requires further study.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号