首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析的ENVISAT ASAR数据在福建省漳州市香蕉园地提取中的应用(英文)
引用本文:汪小钦,王钦敏,凌飞龙,朱晓铃,江洪. 基于主成分分析的ENVISAT ASAR数据在福建省漳州市香蕉园地提取中的应用(英文)[J]. 地球空间信息科学学报, 2009, 12(2): 142-145. DOI: 10.1007/s11806-009-0035-1
作者姓名:汪小钦  王钦敏  凌飞龙  朱晓铃  江洪
作者单位:Spatial;Information;Research;Center;Fujian;Province;Fuzhou;University;
基金项目:Supported by the Program for New Century Excellent Talents in University (NCET-05-0573);;Fujian Science and Technology Project (No2006I0018);;the Science Project of the Education Department of Fujian Province(No 2006F5022)
摘    要:

关 键 词:福建省  主成分分析  香蕉园  数据  漳州市  

Principal component analysis and its application on banana fields mapping using ENVISAT ASAR data in Zhangzhou, Fujian province
Xiaoqin Wang,Qinmin Wang,Feilong Ling,Xiaoling Zhu,Hong Jiang. Principal component analysis and its application on banana fields mapping using ENVISAT ASAR data in Zhangzhou, Fujian province[J]. Geo-Spatial Information Science, 2009, 12(2): 142-145. DOI: 10.1007/s11806-009-0035-1
Authors:Xiaoqin Wang  Qinmin Wang  Feilong Ling  Xiaoling Zhu  Hong Jiang
Affiliation:(1) Key Lab. of Spatial Data Mining & Information Sharing of Ministry of Education, Spatial Information Research Center of Fujian Province, Fuzhou University, 523 Gongye Road, Fuzhou, 350002, China
Abstract:Banana is one of the main economic agrotypes in Zhangzhou, Fujian Province. The multi-temporal ENVISAT ASAR data with different polarization are used to classify the banana fields in this paper. Principal component analysis (PCA) was applied for six pairs of ASAR dual-polarization data. For its large leaves, banana has high backscatter. So the value of banana fields is high and shows very bright in the 1st component, which makes it much easier for banana fields extraction. Dual-polarization data provide more information, and the VV and VH backscatter of banana show different characters with other land covers. Based on the analysis of the radar signature of banana fields and other land covers and the 1st component, banana fields are classified using object-oriented classifier. Compared to the field survey data and ASTER data, the accuracy of banana fields in the study area is 83.5%. It shows that the principal component analysis provides the useful information in SAR images analysis and makes the extraction of banana fields easier. Supported by the Program for New Century Excellent Talents in University (NCET-05-0573), Fujian Science and Technology Project (No.2006I0018), the Science Project of the Education Department of Fujian Province(No. 2006F5022).
Keywords:ENVISAT ASAR  principle component analysis (PCA)  dual-polarization data  banana fields
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号