首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Paleo-redox boundaries in fractured granite
Authors:K Dideriksen  BC Christiansen  T Balic-Zunic  SLS Stipp
Institution:a Nano-Science Centre, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
b Department of Physics, Technical University of Denmark, Bldg. 307, DK-2800 Kgs. Lyngby, Denmark
c Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Abstract:At the Earth’s surface, Fe(II) often oxidises and forms insoluble Fe(III)-(oxyhydr)oxides, whose particle size and structure depend on solution composition and temperature during formation and afterwards. Bacterial processes and exposure to reducing environments reduces them again, releasing dissolved iron to the groundwater. During such cycling, the Fe isotopes fractionate to an extent that is expected to depend on temperature. In this study, we report on the use of Fe-oxides as paleo-redox indicators, using their structure, morphology and Fe-composition as a clue for formation conditions. In samples taken from ∼120 m drill cores in granite from SE Sweden, X-ray amorphous, superparamagnetic, nanometre-sized Fe-oxides are confined to fractures of the upper ∼50 m, whereas well-crystalline Fe-oxides, with particle sizes typical for soils, occur down to ∼110 m. We also identified hematite with a particle size of 100 nm, similar to hematite of hydrothermal origin. The Fe isotope composition of the fine-grained Fe-oxides (−1‰ < δ56Fe < 1‰, IRMM-14 referenced) scatter significantly compared to the distribution previously observed for hydrothermal material (−0.26‰ < δ56Fe < 0.12‰) and they are dominantly heavier than Fe-bearing silicates from fractures (−0.56‰ < δ56Fe < −0.35‰). This is consistent with formation by low-temperature weathering, where Fe-silicates dissolve, Fe(II) oxidises and Fe(III)-oxides precipitate. The X-ray amorphous, nanometre-sized nature of near-surface Fe-oxides suggests recent formation. The deeper situated, well-crystalline Fe-oxides are more mature and we interpret that they record earlier oxidising events. They exist in fractures that are not significantly altered, indicating formation during periods of oxidation. Our results show that oxygenated water may reach depths of ∼110 m in fractured granite. The absence of natural, low-temperature Fe-oxides from deeper drill cores suggests that oxygenated waters do not readily penetrate beyond about 100 m and suggests that radioactive waste repositories located at a depth of ∼500 m should be well-protected from oxygenated waters.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号