首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite
Authors:Samantha L Saalfield  Benjamin C Bostick
Institution:a Department of Earth Sciences, Dartmouth College, HB 6105 Fairchild, Hanover, NH 03755, United States
b Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
Abstract:Many groundwater systems contain anomalously high arsenic concentrations, associated with less than expected retention of As by adsorption to iron (hydr)oxides. Although carbonates are ubiquitous in aquifers, their relationship to arsenate mobilization is not well characterized. This research examines arsenate release from poorly crystalline iron hydroxides in abiotic systems containing calcium and magnesium with bicarbonate under conditions of static and dynamic flow (pH 7.5-8). Aqueous arsenic levels remained low when arsenate-bearing ferrihydrite was equilibrated with artificial groundwater solution containing Ca, Mg, and HCO3. In batch titrations in which a solution of Ca and HCO3 was added repeatedly, the ferrihydrite surface became saturated with adsorbed Ca and HCO3, and aqueous As levels increased by 1-2 orders of magnitude. In columns containing Ca or Mg and HCO3, As solubility initially mimicked titrations, but then rapidly increased by an additional order of magnitude (reaching 12 μM As). Separately, calcium chloride and other simple salts did not induce As release, although sodium bicarbonate and lactate facilitated minor As release under flow. Results indicate that adsorption of calcium or magnesium with bicarbonate leads to As desorption from ferrihydrite, to a degree greater than expected from competitive effects alone, especially under dynamic flow. This desorption may be an important mechanism of As mobilization in As-impacted, circumneutral aquifers, especially those undergoing rapid mineralization of organic matter, which induces calcite dissolution and the production of dissolved calcium and bicarbonate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号