Dissolved rare earth elements in a seasonally snow-covered, alpine/subalpine watershed, Loch Vale, Colorado |
| |
Authors: | Alan M. Shiller |
| |
Affiliation: | Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA |
| |
Abstract: | Dissolved rare earth elements (REEs) were determined in a four-year time series at the outlet of Loch Vale. The Loch Vale watershed is a seasonally snow-covered alpine/subalpine basin in Rocky Mountain National Park, USA. The time series was mainly distinguished by an annual early spring peak in the concentrations of all REEs. REE concentrations at this time were as much as 8-fold greater than at other times of the year. This annual peak was coincident with an early spring peak in dissolved organic carbon (DOC) which results from flushing of soils at the beginning of spring snow melting. The REE/DOC peak occurs as discharge starts to increase from wintertime lows but well before the spring peak in discharge. Speciation considerations suggest complexation of the REEs by DOC. The Ce anomaly also increases (i.e., is less fractionated) during the spring flush indicating that the most reducing (or least oxidizing) REE sources in the system are comparatively more important at that time. Mn data and the La/Yb ratio also support this. The behavior of REEs in the Loch Vale system has additionally been compared with metal and DOC behavior in other systems. Hydrologic and climatic differences can be important especially with regard to timing and duration of the spring flush peak. Damping of hydrologic events in the lower floodplain of major rivers may also partially result in the differences observed between Loch Vale and the lower Mississippi River. However, comparison with the Amazon River system additionally suggests that seasonal flooding of wetlands may be an important regulator of REE concentrations. Chemical differences are also important for these systems. This includes pH and suspended matter concentrations which affect the balance between adsorption and complexation. Additionally, the relative complexing ability of DOC in different systems is a factor needing further consideration. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|