Silicon isotopes in the inner Solar System: Implications for core formation, solar nebular processes and partial melting |
| |
Authors: | Ramananda Chakrabarti Stein B. Jacobsen |
| |
Affiliation: | Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA |
| |
Abstract: | We report Si isotopic data on a suite of terrestrial mantle-derived samples, meteorites and a lunar sample. Our data on co-existing mantle minerals, peridotites and basalts demonstrate lack of any resolvable high temperature fractionation during igneous processes. We show that the δ30Si of the bulk silicate Earth (BSE) is identical, within analytical uncertainties, to carbonaceous and ordinary chondrites (CHUR). Based on our data the difference between δ30SiBSE and δ30SiCHUR is 0.035 ± 0.035. Whole-rock differentiated meteorites from different parent bodies (Mars, Vesta) and a lunar breccia sample also show similar δ30Si suggesting broad-scale Si isotope homogeneity in the inner Solar System with an average δ29Si = −0.20 ± 0.01 and δ30Si = −0.39 ± 0.02 relative to the NBS28 Si isotope standard.A difference between δ30SiBSE and δ30SiCHUR of 0.035, as observed in our study, translates to less than 1.67 wt.% Si in the core considering a continuous accretion model whereas estimates using a batch model are even lower. Within uncertainties (±0.035‰) in the δ30Si difference between the BSE and CHUR, a maximum of 3.84 wt.% Si could be present in the Earth’s core whereas at δ30SiBSE-δ30SiCHUR = 0, there is no requirement of Si in the Earth’s core. Such low Si in the core necessitates the presence of other light elements in the core to explain its density deficit. Our data also places constraints on the oxidation state of the Earth’s mantle during core segregation. The uncertainties in estimating the concentration of oxidized Fe in the mantle during the first 90% of accretion arise from uncertainties in the estimates of the equilibrium partition coefficient of silicon between metal and silicate at conditions relevant to core formation. For δ30SiBSE-δ30SiCHUR = 0.035 ± 0.035, the concentration of oxidized Fe in the mantle during the first 90% of accretion could be as low as ∼1%. However, at δ30SiBSE-δ30SiCHUR = 0, the Si isotope data do not require any change in the mantle concentration of oxidized Fe during accretion from the present day value of 6.26%. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|