首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reductive dissolution of arsenic-bearing ferrihydrite
Authors:Jasmine J Erbs  Brian C Reinsch  Gregory V Lowry  Subir K Banerjee
Institution:a Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
b Department of Geology and Geophysics, Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN 55455, USA
c Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
d Center for Environmental Implications of NanoTechnology (CEINT), Pittsburgh, PA 15213, USA
Abstract:Ferrihydrites were prepared by coprecipitation (COP) or adsorption (ADS) of arsenate, and the products were characterized using solid-state methods. In addition, the kinetics of reductive dissolution by hydroquinone of these well-characterized materials were quantified. Characterization and magnetism results indicate that the 10 wt% As COP ferrihydrite is less crystalline and possibly has smaller crystallite size than the other ferrihydrites, which all have similar crystallinity and particle size. The results from reductive dissolution experiments show similar reaction rates, reaction mechanism, and activation energy for ferrihydrite precipitated with or without added arsenate. However, a marked decrease in reactivity was observed for 10 wt% As ADS ferrihydrite. The decrease is not attributed to differences in activation energy but rather the preferential blocking of active sites on the ferrihydrite surface. Results demonstrate that arsenic may be released by the reductive dissolution of arsenic-bearing ferrihydrite regardless of whether the arsenic is coprecipitated with or adsorbed onto the ferrihydrite. However, under these reaction conditions, release from materials with adsorbed arsenate greatly exceeds that from materials with coprecipitated arsenate. In fact, a considerable amount of arsenic was released from the 10 wt% ADS ferrihydrite before reductive dissolution was initiated. Therefore, the characterization of arsenate-bearing iron oxide materials to determine the method of arsenate incorporation into structures—perhaps by quantification of Fe-Fe coordination with EXAFS spectroscopy—may lead to improved predictions of the large-scale release of arsenic within aquifer systems under reducing conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号